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Abstract

In many common situations, a Bayesian credible interval will be, given the same data,
very similar to a frequentist confidence interval, and researchers will interpret these intervals
in a similar fashion. However, no predictable similarity exists when credible intervals are
based on model-averaged posteriors whenever one of the two models under consideration is a
so called “point-null”. Not only can this model-averaged credible interval be quite different
than the frequentist confidence interval, in some cases it may be undefinable. This is a
lesser-known consequence of the Jeffreys-Lindley paradox and is of particular interest given
the popularity of the Bayes factor for testing point-null hypotheses.

1 Introduction

Recently, several Bayesian tests using Bayes factors have been proposed as alterna-

tives to frequentist hypothesis testing; see Heck et al. (2022) for a recent review.

When using the Bayes factor (or the posterior model odds) for testing, it is often

recommended that researchers also report parameter estimates and their credible in-

tervals (e.g., Keysers et al. (2020)). Indeed, following a controversial debate about

the strict binary nature of statistical tests, many now call for an additional focus

on parameter estimation with appropriate uncertainty estimation; see Wasserstein &

Lazar (2016).

Campbell & Gustafson (2022) consider how Bayesian testing and estimation can

be done in a complimentary manner and conclude that if one reports a Bayes factor

comparing two models, then one should also report a model-averaged credible interval

(i.e., one based on the posterior averaged over the two models under consideration).

Researchers who follow this recommendation can obtain credible intervals congruent

with their Bayes factor, thereby obtaining suitable uncertainty estimation.

In many familiar situations, a posterior credible interval will be, given the same

data, very similar to a frequentist confidence interval and researchers will interpret
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these intervals in a similar fashion; see Albers et al. (2018). However, when comparing

two models, one of which involves a so-called “point-null”, it is less clear whether or

not such similarity can be assumed.

Previous work has examined the properties of Bayesian credible intervals and

how they relate to frequentist confidence intervals under various prior specifications

(e.g., Casella & Berger (1987), Greenland & Poole (2013), Held et al. (2020)). In

this paper, on the basis of a few simple examples, we will examine properties spe-

cific to model-averaged credible intervals. We will show that, when one of the two

models under consideration is a point-null model, not only can a model-averaged

credible interval be quite different than the confidence interval, oftentimes, for a de-

sired probability level, it may be undefined. This is perhaps an unexpected correlate

of the Jeffreys-Lindley paradox, the most well known example of the rift between fre-

quentist and Bayesian statistical philosophies; see Wagenmakers & Ly (2021). The

limitations/particularities of working with point-null models are of particular interest

given the recent popularity of the Bayes factor for testing point-null hypotheses.

We begin in Section 2 by re-visiting an example of two Normal models considered

previously by Wagenmakers & Ly (2021) in their discussion of the Jeffreys-Lindley

paradox. In Section 3, we extend this example to consider the consequences specifying

a point-null model. We conclude in Section 4 with thoughts on the consequences,

with respect to parameter estimation, of specifying point-null models.

2 A mixture of two Normals

Let θ be the parameter of interest for which there are two a priori probable models:

M0 and M1, defined by two different priors π0(θ) and π1(θ). The posterior density

which appropriately acknowledges the uncertainty with regards to which of the two

models is correct is the mixture density:

π(θ|data) =Pr(M0|data)π0(θ|data) + Pr(M1|data)π1(θ|data), (1)

where the model-specific posteriors, π0(θ|data) and π1(θ|data), are weighted by

their posterior model probabilities, Pr(M0|data) and Pr(M1|data); see Campbell &

Gustafson (2022). Note that this “mixture” posterior is obtained as a result of spec-

ifying the “mixture” prior:

π(θ) = Pr(M0)π0(θ) + Pr(M1)π1(θ), (2)

where Pr(M0) and Pr(M1) are the a priori model probabilities.

As an example, consider two a priori equally probable Normal models, M0 : θ ∼

N(0, g0) and M1 : θ ∼ N(0, g1), such that Pr(M0) = Pr(M1) = 0.5. The prior
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density functions for the two models are defined as:

π0(θ) = fNormal(θ, 0, g0), (3)

and

π1(θ) = fNormal(θ, 0, g1), (4)

where fNormal(x, µ, σ
2) is the Normal probability density function evaluated at x,

with mean parameter µ and variance parameter σ2. Let yi be the i-th data-point,

for i = 1, ..., n; let ȳ =
∑n

i=1 yi/n be the sample mean; and suppose these data are

normally distributed with known unit variance such that:

Pr(data|θ) =
n∏

i=1

fNormal(yi, θ, 1). (5)

Then the Bayes factor is:

BF01 =

√
1 + ng1
1 + ng0

× exp
( (g0 − g1)nz

2

2(1 + ng0)(1 + ng1)

)
, (6)

where z =
√
nȳ. The posterior model probabilities can be calculated from the Bayes

factor as:

Pr(M0|data) =
Pr(M0)

Pr(M1)/BF01 + Pr(M0)
and Pr(M1|data) = 1− Pr(M0|data).

(7)

Finally, the model specific posteriors are defined as:

πj(θ|data) =fNormal

(
θ,

zgj√
n( 1n + gj)

,
gj

1 + gjn

)
, (8)

for j = 0, 1.

Having established all the components of equation (1), let us now consider how to

define a credible interval based on the model-averaged posterior. An upper one-sided

(1− α)% credible interval is defined as:

one-sided (1− α)%CrI = [θ∗,∞), (9)

where θ∗ satisfies the following equality:

Pr(θ < θ∗|data) = α. (10)

Let us define an equal-tailed two-sided (1−α)% credible interval from a combination

of two upper one-sided intervals as:

two-sided (1− α)%CrI = [θl∗, θu∗), (11)
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Figure 1: For the “mixture of two normals” example, panels A, B, and C, plot the M0 prior, the

M1 prior, and the mixture-prior, respectively. For data with ȳ = 0.520 and n = 10, panels D, E,

and F, plot the M0 posterior, the M1 posterior, and the model-averaged posterior, respectively.

where θl∗ and θu∗ satisfy: Pr(θ < θl∗|data) = α/2 and Pr(θ < θu∗|data) = 1 − α/2.

Note that, in our example of two Normal models, these posterior values are calculated

as:

Pr(θ < θ∗|data) =
∫ θ∗

−∞
π(θ|data)dθ =

∫ θ∗

−∞

(
fNorm((z − θ

√
n), 0, 1)× π(θ)

)
dθ∫∞

−∞

(
fNorm((z − θ

√
n), 0, 1)× π(θ)

)
dθ
,

where π(θ) is defined as in equation (2).

To illustrate, let g0 = 0.02, g1 = 1 and suppose we observe data for which ȳ =

1.645/
√
n, which corresponds to a p-value of p = 0.05 when using these data to test

against the null hypothesis H0 : θ < 0. See Figure 1 which plots priors and posteriors

for this scenario with n = 10. A frequentist upper one-sided 95% confidence interval

for these data will be: [0,∞). A 90% equal tailed two-sided confidence interval will

be: [0, 2×1.645/
√
n). How do these frequentist intervals compare to model-averaged

Bayesian credible intervals? Consider two observations on this.

First, setting α = 0.05 in equation (10), we see that as n increases, θ∗ approaches
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Figure 2: We consider Pr(θ < θ∗|data) = α and data corresponding to (n, p), where n is the

sample size and p is the frequentist p-value obtained when testing the data against the null

hypothesis H0 : θ < θ0. For the normal mixture example with g0 = 0.02 and g1 = 1, and

p = 0.05 for θ∗ = θ0 = 0, we see that, as n increases, α approaches p (upper panel). For

α = p = 0.05, as n increases, θ∗ approaches θ0 (lower panel).

0: For n = 10, we obtain θ∗ = −0.1039, whereas for n = 10000, we obtain θ∗ =

−0.0001; see lower panel of Figure 2. For n = 10, a 90% equal tailed two-sided

confidence interval will be [0,1.0404) and a 90% equal-tailed credible interval will be

[−0.1039, 0.8501). For for n = 10000, a 90% equal tailed two-sided confidence interval

will be [0,0.0329) and a 90% equal-tailed credible interval will be [−0.0001, 0.0328).

Secondly, setting θ∗ = 0, we see that as n increases, the corresponding value of α

approaches p = 0.05: For n = 10, we obtain α = 0.160, whereas for n = 10000, we

obtain α = 0.050; see upper panel of Figure 2. This asymptotic behaviour also holds

for arbitrary values of θ∗. As n increases, the value of Pr(θ < θ∗|data) will approach∫√
n(ȳ−θ∗)

−∞ fNorm(x, 0, 1)dx, which is equal to the frequentist p-value obtained when

testing the data against the null hypothesis H0 : θ < θ∗. Note how the solid and

dashed curves approach one another as n increases in Figure 3, for θ∗ = 0.01 (green

curves), for θ∗ = 0.10 (grey curves), and for θ∗ = 0.35 (red curves).
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Figure 3: Let ȳ = 1.645/
√
n and let g0 = 0.02. As n increases, the value of Pr(θ < θ∗|data)

(solid line) and
∫√

n(ȳ−θ∗)

−∞ fNorm(x, 0, 1)dx (dashed line) approach one another; for θ∗ = 0.01

(green curves), for θ∗ = 0.10 (grey curves), and for θ∗ = 0.35 (red curves).
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Based on the asymptotic behaviour of the posterior in this example, one might

reasonably conclude that, with a sufficiently large sample size, the model-averaged

credible interval will approximate the frequentist’s confidence interval for any α prob-

ability level. However, Wagenmakers & Ly (2021) argue that, in this scenario, “the

Jeffreys-Lindley paradox still applies” indicating that there is indeed a conflict be-

tween Bayesian and frequentist interpretations of the data.

Wagenmakers & Ly (2021) explain their reasoning as follows. From equation (7),

we calculate limn→∞Pr(M1|data) = (1 +
√
g1/g0)

−1 = (1 + 1/
√
0.02)−1 = 0.124

and limn→∞Pr(M0|data) = 0.876. Therefore, with sufficiently large n, we have that

Pr(M1|data) < Pr(M0|data) regardless of the data (i.e., regardless of the fixed value

of z =
√
nȳ); see Figure 4.

In this scenario, model selection (i.e., evaluating the relative values of Pr(M0|data)

and Pr(M1|data)) is not addressing the same question as estimation (i.e., evaluating

Pr(θ|data) to determine which values of θ are a posteriori most likely). The posterior

density of θ describes one’s belief in the probability of different possible values of θ,

whereas the posterior model probabilities describe the probability of different data

generating processes (DGP) (including the generation of θ). As such, while it is true

that the Jeffreys-Lindley paradox still applies with regards to model selection (i.e.,

with a sufficiently large sample size and fixed z, the Bayesian will inevitably select

M0), the paradox does not apply when it comes to parameter estimation (i.e., with a

sufficiently large sample size and fixed z, the Bayesian will inevitably agree with the

frequentist when it comes to estimating θ, with their credible interval approximately

equal to the frequentist’s confidence interval). In order for the Jeffreys-Lindley para-

dox to apply to parameter estimation, a point-mass in the prior is required. We

consider this situation in the next Section.

3 Parameter estimation with a point null

Consider the same scenario as above but with the null model, M0, defined as a

so-called “point-null” such that the prior density function under M0 is:

π0(θ) = δ0(θ), (12)

where δ0() is the Dirac delta function at 0 which can be informally thought of as

setting g0 = 0 in equation (3), or alternatively thought of as a probability density

function which is zero everywhere except at 0, where it is infinite.

Note that Pr(θ = 0|data) = Pr(M0|data), or equivalently, Pr(θ ̸= 0|data) =

Pr(M1|data). As such, model selection (selecting between M0 and M1) and null
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Figure 4: For the normal mixture model example with g0 = 0.02 and g1 = 1, the Pr(M1|data)

(blue curve) increases towards 0.876 with increasing n, while the value of Pr(θ < 0|data) (grey

line) approaches 0.05 (dashed black line).
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Figure 5: For the “point-null” example, panels A, B, and C, plot the M0 prior, the M1 prior,

and the mixture-prior, respectively. For data with ȳ = 0.520 and n = 10, panels D, E, and F,

plot the M0 posterior, the M1 posterior, and the model-averaged posterior, respectively.
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hypothesis testing (selecting between H0 : θ = 0 and H1 : θ ̸= 0) are equivalent in

this scenario.

With the “point-null” prior for M0 as defined in (12), and with g1 = 1, as defined

previously, the “mixture” prior, π(θ), is recognizable as a “spike-and-slab” prior (see

van den Bergh et al. (2021)) and the Bayes factor is equal to:

BF01 =
√
1 + n× exp

( −nz2

2(1 + n)

)
, (13)

The posterior density is nonatomic with a spike (i.e., a discontinuity with infinite

density) at 0:

π(θ|data) = Pr(M0|data)δ0(θ) + Pr(M1|data)fNormal

(
θ,

z
√
n( 1n + 1)

,
1

1 + n

)
, (14)

where the posterior model probabilities, Pr(M0|data) and Pr(M1|data), can be cal-

culated from the Bayes factor as in equation (7).

Returning to our hypothetical data with z = 1.645, we see that for θ∗ = 0, as

n increases, α (such that Pr(θ < θ∗|data) = α) does not approach p = 0.05 and

instead approaches 0: For n = 10, we obtain α = 0.03, and for n = 1000, we

obtain α = 0.005; see trajectory of the grey curve in Figure 6. Whatsmore, as n

increases and ȳ = 1.645/
√
n remains fixed, the posterior probability on the “spike”

at 0 increases towards infinity such that: limn→∞Pr(M0|data) = 1; as famously

recognized by Lindley (1957).

Perhaps even more puzzling is that, for fixed α = 0.05, there is simply no corre-

sponding value of θ∗ (such that α = Pr(θ < θ∗|data)) for any n > 2. For n = 2 we can

define θ∗ = −0.0163, such that Pr(θ < −0.0163|data) = 0.05. However, for n = 3, a

precise value of θ∗ cannot be defined since, due to the discontinuity in the posterior,

we have: Pr(θ < 0|data) = 0.045 < α, and Pr(θ ≤ 0|data) = 0.465 > α. For n = 10

the gap is even wider: Pr(θ < 0|data) = 0.030 < α and Pr(θ ≤ 0|data) = 0.522 > α.

Figure 6 plots these numbers for increasing values of n. As a consequence, it is no

longer the case that, with a sufficiently large sample size, a Bayesian’s credible inter-

val will approximate a frequentist’s confidence interval. In fact, for certain values of

α and n, calculating a credible interval is not even possible.

In general, determining a specific value of θ∗ for a given value of α (such that

α = Pr(θ < θ∗|data)) is only possible for values of α outside of the “incredibility

interval”:[(
Pr(θ < 0|data,M1)Pr(M1|data)

)
,
(
Pr(θ < 0|data,M1)Pr(M1|data)+Pr(M0|data)

)]
.

(15)

In Figure 6, the lower grey curve corresponds to the lower bound of the incredibility

interval and the upper red curve corresponds to the upper bound. Notably, since
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Figure 6: For the hypothetical data with z = 1.645, as n increases along the horizontal axis,

values of α such that Pr(θ < 0|data) = α (grey line) and Pr(θ ≤ 0|data) = α (red line) are

plotted on the vertical axis.

limn→∞Pr(M0|data) = 1 and limn→∞Pr(M1|data) = 0, the width of the incredibility

interval increases as n increases. As a result, determining a precisely α-level value

of θ∗ such that α = Pr(θ < θ∗|data), becomes increasingly impossible as n grows

large. This is true regardless of the data; see Figure 7 for values of the lower bound

obtained with data where ȳ = 2.575/
√
n (data for which one obtains a p-value of

p = 0.005 when testing against H0 : θ < θ0).

When α is inside the incredibility interval, there remains a unconventional way

for defining a (1− α)% credible interval. In order to establish a correct value for θ∗

such that Pr(θ < θ∗|data) = α (over repeated samples) one defines θ∗ stochastically

such that

θ∗ =

0, with probability γ; and

0 + ϵ, with probability 1− γ,
(16)

where:

γ =
α− Pr(θ ≤ 0|data)

Pr(θ < 0|data)− Pr(θ ≤ 0|data)
, (17)

and ϵ is an arbitrarily small number.

Returning to our example data with ȳ = 1.645/
√
n, we note that, for n = 10,

Pr(θ < 0|data) = 0.030 and Pr(θ ≤ 0|data) = 0.522. As such, for α = 0.05 (which is

10



n

α

5 10 20 50 100 1000 10000

0.000

0.002

0.004

0.006

0.008

0.010

0.008

0.006

0.005
0.004

0.004

0.002

0.001

Pr(θ < 0|data)

Figure 7: With data where ȳ = 2.575/
√
n, as n increases, the lower bound of the incredibility

interval (the solid line) decreases towards zero. As a consequence, determining a value of θ∗ such

that Pr(θ < θ∗|data) = α, when α = 0.005 (the dotted line) is only possible for n < 20.

inside the incredibility interval of [0.030, 0.522]), we define θ∗ as:

θ∗ =

0, with probability γ = 0.959; and

0 + ϵ, with probability (1− γ) = 0.041.
(18)

Defining θ∗ in this way will guarantee that, over repeated samples, Pr(θ < θ∗|data) =

0.05.

As another example, suppose n = 100 and ȳ = 2.054/
√
n = 0.2054 which corre-

sponds to a p-value of p = 0.04 when using the data to test against the null hypothesis

H0 : θ = 0, and a p-value of p = 0.02 when using the data to test against the null

hypothesis H0 : θ < 0. One can easily calculate an upper one-sided frequentist 95%

confidence interval for these data equal to: [ȳ − 1.645/
√
n,∞) = [0.040,∞), which

clearly excludes 0. However, one cannot calculate an upper one-sided 95% credi-

ble interval since α = 0.05 is within the incredibility interval for this data: [0.009,

0.564]. The closest one can do is to calculate an upper one-sided 99.1% credible

equal to: [0,∞) which includes 0, or calculate an upper one-sided 43.6% credible

interval equal to (0,∞) which excludes 0. The only way to define an upper one-sided

interval with exactly 95% probability of including the true value of θ (over repeated

samples) is to do so stochastically as equal to: [θ∗,∞), where θ∗ = 0 with proba-
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bility γ = (0.050 − 0.564)/(0.009 − 0.564) = 0.926, and θ∗ = 0 + ϵ with probability

1− γ = 0.074.

We are not seriously suggesting that researchers define credible intervals in this

bizarre stochastic way. We simply wish to demonstrate that this is the only way

one could correctly define the credible interval to obtain the correct coverage. When

point-null models are involved, model-averaged posteriors are liable to discontinuous

point masses and must therefore be approached with caution. The issue only gets

thornier as the sample size increases.

For a very very large n it is possible that both α/2 and (1− α/2) are within the

incredibility interval. In this case, the equal-tailed two-sided (1−α)% credible interval

must be defined in an even more bizarre way. When both α/2 and (1 − α/2) are

both in the incredibility interval, the credible interval must be defined stochastically

as either a single point or as an entirely empty interval:

(1− α)%CrI =

[0], with probability ψ; and

∅, with probability (1− ψ),
(19)

where

ψ =
Pr(θ = 0|data)− α

2× Pr(θ = 0|data)− 1
. (20)

When we look at the asymptotic behaviour of these “stochastic credible intervals”

it becomes clear that the Jefereys-Lindley paradox predictably reduces the data to

be entirely inconsequential. As n increases, γ and ψ both approach 1− α since:

limn→∞γ = limn→∞

( α− Pr(θ ≤ θ0|data)
Pr(θ < θ0|data)− Pr(θ ≤ θ0|data)

)
=

(α− 1

−1

)
= 1− α, (21)

and:

limn→∞ψ = limn→∞

( Pr(θ = 0|data)− α

2× Pr(θ = 0|data)− 1

)
=

(1− α

2− 1

)
= 1− α. (22)

Therefore, for sufficiently large n and z remaining constant, the probability that one

will exclude 0 from a (1 − α)%credible interval will equal α regardless of the data;

see Figure 8. While this may strike one as paradoxical, it is entirely congruent with

the wildly-known consequence of the Jefereys-Lindley paradox: As n increases and z

is fixed, the probability of selecting M0 will go to 1.
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Figure 8: Each line corresponds to observing data corresponding to a p-value of p when testing

against H0 : θ < 0.

4 Conclusion

We demonstrated that when one of the two models under consideration is a point-null

model, not only can one’s credible interval be rather different than the frequentist

confidence interval, oftentimes it will be simply undefined (at least in a conventional

sense).

If researchers truly believe that there is a non-zero prior probability that the

parameter of interest is precisely zero (and this prior probability is equal to the value

assigned to Pr(M0)), Bayesian testing with a point-null will be optimal in the sense

of minimizing the expected loss (with respect to a joint distribution of the data and

parameters); see Berger (1985) for a discussion of Bayesian optimality. However,

researchers should be aware that, while perhaps optimal, Bayesian testing with a

point-null can lead to rather unexpected asymptotic behaviour.

The consequences of the Jefereys-Lindley paradox on model selection (and null hy-

pothesis testing) are often understood as “intuitive” and not necessarily unfavourable:

When sample sizes are very large, researchers might indeed prefer to sacrifice some

power in order to lower the probability of a type I error, a trade-off that occurs

necessarily when testing a point-null hypothesis with the Bayes factor; see Pericchi

& Pereira (2016) and Wagenmakers & Ly (2021). However, the consequences of

the Jefereys-Lindley paradox on parameter estimation –specifically with regards to

model-averaged credible intervals and the inability to define these for certain prob-

ability levels– were previously less well understood, and certainly strike us as less
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intuitive.
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