
Research Article

Received 5 May 2012, Accepted 30 September 2013 Published online 18 October 2013 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6021

The consequences of proportional
hazards based model selection
H. Campbell*† and C.B. Dean

For testing the efficacy of a treatment in a clinical trial with survival data, the Cox proportional hazards (PH)
model is the well-accepted, conventional tool. When using this model, one typically proceeds by confirming that
the required PH assumption holds true. If the PH assumption fails to hold, there are many options available,
proposed as alternatives to the Cox PH model. An important question which arises is whether the potential bias
introduced by this sequential model fitting procedure merits concern and, if so, what are effective mechanisms for
correction. We investigate by means of simulation study and draw attention to the considerable drawbacks, with
regard to power, of a simple resampling technique, the permutation adjustment, a natural recourse for address-
ing such challenges. We also consider a recently proposed two-stage testing strategy (2008) for ameliorating these
effects. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

When one wishes to relate event times to one or more covariates, a common and straightforward
approach is to employ the Cox proportional hazards (PH) model [2]. The PH model is the most widely
used model for the analysis of censored clinical trial data, where one seeks to relate the time of an
individual’s death (or other illness related event) to whether or not the individual received a potentially
beneficial treatment.

The PH model is formulated such that the covariate effect is multiplicative with respect to the hazard
rate, defined as the instantaneous risk of event occurrence. For example, a particular drug treatment may
halve the hazard rate of dying for those suffering from cancer, and the hazard ratio, as described by
the PH model, would therefore be one-half. The standard model (with no time-dependent covariates)
requires the assumption that the hazards ratio be constant over the entire follow-up period. In other
words, the model assumes that the covariate (i.e., treatment) effect is constant during the entire time
the individuals are observed. While this PH assumption may be reasonable in many situations, it may
not hold in others. For example, among cancer patients, those receiving treatment requiring elevated
doses of chemotherapy may tend to have higher early mortality due to the toxicity of the chemotherapy.
However, those who survive the early stages of treatment may benefit from a lower long-term hazard
rate if the treatment is effective. See Therneau and Grambsch [3] (chapter 6.6) for a review of different
causes of non-proportionality.

In situations when the PH assumption fails to hold, the PH model may not be appropriate as it can
result in erroneous inference. Therefore, in order to avoid any misleading conclusions when analyzing
time-to-event data, one should first verify that the PH assumption holds before fitting the model to
generate estimates about covariate effects. Numerous tests for the validation of the PH assumption have
been proposed, see for example [4, 5]. The most popular is a test attributed to Grambsch and Therneau
[6], (G&T). Typically, if such a test invalidates the PH assumption, one subsequently alters the PH model
or employs an altogether different method for the analysis.
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Despite the fact that many adequate and flexible alternatives to the PH model are available, these
may be less powerful and considerably more difficult to interpret for the average practitioner. Thus,
typical practice would first try to fit the data to a PH model, and only consider alternatives, such as the
popular accelerated failure time (AFT) model [7], in the event that a G&T type test indicates a lack of
proportionality. Putter et al. [8] considered a similar situation and described the process of fitting an
adjusted Cox PH model with time-varying coefficients to account for the non-PH. This approach seems
practical and straightforward to implement; as discussed in Therneau and Grambsh [3] (chapter 6.2).
However, the adjusted model has the disadvantage that one must choose a functional form describing
how the effect of the treatment changes over time. Perperoglou et al. [9] considered the adjusted Cox
PH model with time-varying coefficients and suggested using reduced rank regression to overcome
the drawback of choosing a functional form for the treatment effect. Their approach attempts to
remove some subjectivity by allowing the AIC criteria to guide one’s choice among a large number of
candidates. The authors also consider the use of frailty models and cure rate models. In addition to
reviewing several methods for comparing hazard rates when there is evidence of non-PH, Liu et al. [10]
proposed a new model in which a modified Box–Cox transformation is employed to cover a wide range
of functional forms.

A situation that often occurs when hazards are found to be non-proportional, is that, the Kaplan–Meier
(KM) survival curves appear to cross. Logan et al. [11] recommended a number of simple tests for
comparing treatments in the presence of non-PH and crossing survival curves. These tests compare
the long-term survival of patients and require that a time point t0 be ‘pre-specified’ (before one obtains
the data), such that survival beyond t0 is considered long-term. This value t0 must be chosen such that
the survival curves are likely to cross prior to that time point, if at all. Although some of the tests
considered are relatively insensitive to the choice of t0, it is often the case that no prior knowledge
regarding such a time point is available and the required pre-specification cannot be reasonably made.
Mantel and Stablein [12], in a similar study, recognized this inconvenience—‘admittedly, this is a
difficult situation to envisage’— and considered ‘letting the data suggest the crossing point’. Recently,
methods for point and interval estimation of the crossing time point have been considered [13].

A common concern with all these approaches is that the uncertainty associated with the staged
model selection procedure is not taken into account. Although the unfortunate practice of ignoring
model uncertainty is not limited to the analysis of time-to-event data—Breiman [14] deemed this a ‘quiet
scandal in the statistical community’—it has, for the most part, been left unaddressed within the survival
analysis literature. Notable exceptions include Altman and Anderson [15], who considered using the
bootstrap to validate the stability of a chosen Cox model, and Sauerbrei and Schumacher [16], who dis-
cussed the use of bootstrapping for variable selection. Yet, bootstrapping remains unpopular. Sauerbrei
and Royston [17] drew attention to the fact that bootstrapping plays an unfortunately negligible role in
the analysis of clinical trial data. The authors acknowledge that ‘well-known problems of data-dependent
model building, such as over-fitting the data or biased estimates of parameters, are possible reasons for
modeling not playing a more important role in clinical research’. They argue that the bootstrap and other
resampling techniques could, and should, play an important role to overcome these issues.

Although resampling techniques may be useful for variable selection and model validation in
prognostic studies [18]—where one may have dozens of possible covariates resulting in thousands of
possible models—the question remains, are they desirable for addressing the situation of checking and
correcting for PH? Shepherd [19] noted

A highly cited paper recommends bootstrapping the process of examining and correcting possible violations
of the PH assumption ([20]). However, I know of no analysis that has bootstrapped the process of checking
the PH assumption.

Shepherd [19] drew attention to this issue and studied the differences one obtains in confidence intervals
when properly accounting for model selection by bootstrapping. Unfortunately, the cost of checking the
PH assumption under the null hypothesis of no treatment effect is left unaddressed.

In this work, we wish to determine the consequences, in terms of obtaining correct type-I error, of the
common two-stage approach: fitting a Cox PH model if there is no evidence against the PH assumption,
while using an alternative test for treatment effect in the event that the PH assumption is suspect. We
investigate the merits of different two-stage testing strategies by simulation and discuss the results and
implications in Section 2. In Section 3, we investigate the possibility of using permutation adjustment to
overcome the bias encountered and consider the effects such an adjustment may have on power. We also
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consider the advantages and disadvantages of an alternative two-stage procedure proposed by Qiu and
Sheng [1].

2. The common two-stage approach under the null

2.1. The common two-stage approach

As discussed in Section 1, prevailing practice for the analysis of time-to-event data would first try to
fit the data to a Cox PH model and only consider alternatives in the event that a G&T type test indi-
cates a lack of proportionality. We designate this procedure the ‘common two-stage approach’. The most
general hypothesis test under consideration is

H0 W h.t jX D 0/D h.t jX D 1/, S.t jX D 0/D S.t jX D 1/; for all t I
H1 W h.t jX D 0/¤ h.t jX D 1/, S.t jX D 0/¤ S.t jX D 1/; for some t :

(1)

where X is a binary covariate and t is elapsed time; h.t/ and S.t/ are the hazard and survivor functions,
respectively.

Having fit the data to a Cox PH model, one typically tests for significant covariate effect by either a
Wald test or a likelihood ratio test (LRT). Bangdiwala [21] summarized the difference between the Wald
test and LRT. Although the likelihood ratio and Wald statistics are asymptotically equivalent and most
often result in similar, if not identical conclusions, the LRT statistic is preferable for many practitioners,
as it converges more quickly to the !2 asymptotic form. As such, we will use the LRT throughout
this paper.

One of the main advantages of the Cox model is that, in addition to evaluating the statistical
significance of a covariate effect, one obtains a point estimate of the magnitude of this effect as well
as a corresponding confidence interval. However, it must be cautioned that the validity of this inference
rests on the PH assumption. A common test to verify this assumption is the G&T test, a !2 test based on
how the scaled Schoenfeld residuals, s!k , compare with a function of time, g.t/. Therneau and Grambsh
[3] noted that ‘for long-tailed survival distributions [. . . ] log(t) is often a good choice’. However, setting
g.t/ as the left-continuous version of the KM curve (without covariates) ‘tends to spread the residuals s!k
fairly evenly across the plot from left to right, avoiding potential problems with outliers’. For the purpose
of our simulation studies, because we are simulating event-times from a long-tailed distribution, we will
set g.t/D log.t/.

In the event that a G&T type test indicates a lack of proportionality, one of several possible alternative
methods is typically employed. Three common ‘second-stage’ methods will be investigated in simula-
tions throughout this paper: (i) the adjusted Cox PH model with time-varying coefficients; (ii) the AFT
model; and (iii) the post-cross-point log-rank test. A brief review of these follows.

The adjusted Cox PH model with time-varying coefficients considers the following model:

h .t jXi /D h0.t/exp .Xiˇ.t//D h0.t/exp Œˇ0Xi C ˇ1 .Xif .t//" ; (2)

for i D 1; : : : ; n observations and where f .t/ incorporates the time-varying treatment effect. As men-
tioned in the Section 1, a disadvantage with this model is that one must choose f .t/ from many possible
functional forms. Three common choices for f .t/ are log.t/,

p
t , and t . Putter et al. [8] recommended

considering goodness of fit with a plot of the scaled Schoenfeld residuals to guide one’s choice. Because
using a subjective graphical evaluation like this is not possible in a large simulation study such as ours,
we will instead select f .t/ based on the BIC measure of goodness of fit.

The parametric AFT model, although not appropriate if there are any crossovers in the survival func-
tion, is a straightforward and rather interpretable alternative to the PH model [22]. The AFT model can
be thought of as a linear model for the logarithm of the survival time:

log.Ti /DX
0
iˇC #$i ; (3)

where ˇ and # are parameters to be estimated. One must specify a distribution for $i . A popular choice is
the extreme value distribution. The corresponding distribution of the event-times, Ti , is then the Weibull
distribution. The popularity of this parametrization can be attributed to the inherent flexibility the Weibull
distribution provides; as such, we will use this parametric choice in all simulation studies.

The common log-rank (also known as the Mantel–Cox) statistic forms the basis for a post-cross-point
log-rank test considered by Logan et al. [11]. Assume that a time point t0 can be ‘pre-specified’ (before
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one obtains the data), such that survival beyond t0 is considered long-term with t0 (the ‘cross-point’)
chosen such that the survival curves are likely to cross prior to that time point, if at all. Then a post-t0
log-rank test statistic can be defined as

ZLR.t0/D
XLR.t0/

O#LR.t0/
!N.0; 1/;

where

XLR.t0/D
X
tj>t0

Y1jY0j

Yj

!
d1j

Y1j
" d0j
Y0j

"
; O#2LR D

X
tj>t0

Y1jY0j

Y 2j

!
Yj " d1j
Yj " 1

"
dj ;

where Ykj , Yj denote the number at risk at tj in the kth treatment group and in total; dkj and dj denote
the number of events at tj for the kth group and in total. Several other log-rank type tests have been pro-
posed. These include the Peto–Peto [23] log-rank test, which places more weight on earlier time points,
a weighted log-rank test with additional weight placed on later time points proposed by Harrington and
Fleming [24], and a weighted log-rank test that emphasizes early and/or late differences studied by Wu
and Gilbert [25]. These have been found to be powerful in detecting many non-PH alternatives.

It is worth noting that doing an additional test or fitting an additional model once PH has been rejected
is somewhat redundant, because rejection of PH implies that the hazards cannot be equal and thus inval-
idates the null hypothesis (Eq. 1). In practice, however, this is a moot point. Because the motivation
behind conducting a G&T type test is not to determine treatment effect, but rather to validate an assump-
tion at the basis of the Cox PH model, it is not considered sufficient for establishing significant treatment
effect. Further research is needed to determine whether or not such a practice (using only the Cox PH
model and a G&T type test) has any merit and what type of adjustment would be needed to account for
the two tests being performed in conjunction.

2.2. Simulation study I

In order to assess the potential bias of the common two-stage approach, we investigated its performance
under the null model by simulation study. Consider the probability density function of the Weibull distri-
bution: f .t/ D k

!

#
t
!

$k"1
exp

%#
" t!

$k& . We simulated event-times from the Weibull distribution with
parameters k D 0:6 and % D 83, such that the probability of an event exceeding t D72 is about 0.4.
While we will focus our discussion on results obtained from simulations from this distribution, we also
performed the identical simulation study with event-times simulated from two alternative Weibull distri-
butions with (i) k D 1:2 and %D 77:5 and with (ii) k D 0:2 and %D 112. These additional experiments
will provide support to the results.

Event-times were simulated in each experiment such that half are attributed to ‘a control group’
(X D 0) and half to a ‘treatment group’ (X D 1). Three censoring scenarios are considered: (i) right
censoring at t D 72, when survival probability equals 0.4; (ii) right censoring at t D 72 with additional
independent exponential censoring generated such that approximately 15% of individuals are censored
by t D 24; and (iii) right censoring at t D 72 with additional independent exponential censoring gener-
ated such that approximately 30% of individuals are censored by t D 24. The settings used were set to
mimic the simulation studies of Logan et al. [11].

We investigated four different two-stage testing schemes, all of which first test for PH by the G&T test
and subsequently fit a Cox PH model if the G&T test fails to reject proportionality (i.e., if the p-value
from the G&T test (pGT ) is greater than ˛G&T D 0.05). In the event that proportionality is suspect (i.e.,
if pGT is less than or equal to ˛G&T D 0.05), the four possibilities are as follows:

(1) AdjCox: the adjusted Cox PH model with time varying coefficients and f .t/D log.t/, as described
by Putter et al. [8];

(2) AdjCoxChoice: the adjusted Cox PH model with time varying coefficients and f .t/ chosen as
‘best’ fit (best BIC value) among f .t/ D log.t/, f .t/ D

p
t , and f .t/ D t , as described by Putter

et al. [8];
(3) LogRank(t0): the log-rank test with t0 D 24, as described by Logan et al. [11]; and
(4) AFT: the AFT model, as described by Wei [7].

For every model fit, the LRT is employed to calculate a !2 statistic and p-value. Sample size was set
to be either 50, 100, or 200 event-times. In total, nine datasets of 100,000 event-times and censoring
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times were generated for each combination sample size and censoring scenario. For each dataset, and
each of the four two-stage approaches, we recorded all p-values, and whether or not the null hypothesis
was rejected at the ˛ D 0:05 significance level, under the two-stage approach. We will compare these
numbers to those expected if the sequential tests were fully independent.

2.3. Results of simulation study I

Table I summarizes the results of ‘simulation study I’, listing the percentage of runs for which the null
hypothesis was rejected (‘significant’), for each of the scenarios under investigation. Figure 1 displays

Table I. Simulation Study I. For each of 100,000 simulation runs, the Grambsch and Therneau test deter-
mined whether the data should be analyzed by the Cox proportional hazards model (if pG&T > 0.05) or by
the chosen alternative (if pG&T 6 0.05).

Cox PH .pG&T > 0:05/ Alternative .pG&T 6 0:05/ Two-stage approach

Sample %censored at Significant Not Significant Significant Not Significant Significant Not Significant
size at t D 24 #

pph 6 0:05
$ #
pph > 0:05

$
.palt 6 0:05/ .palt > 0:05/ .p 6 0:05/ .p > 0:05/

AdjCox 50 0 4.64 90.70 2.50 2.16 7.14 92.86
50 15 4.73 90.63 2.53 2.11 7.26 92.74
50 30 4.93 90.49 2.58 2.01 7.51 92.50

100 0 4.72 90.46 2.37 2.45 7.09 92.91
100 15 4.85 90.37 2.34 2.45 7.19 92.82
100 30 4.89 90.24 2.36 2.51 7.25 92.75
200 0 4.83 90.21 2.31 2.64 7.14 92.85
200 15 4.89 90.1 2.23 2.79 7.12 92.89
200 30 4.86 90.28 2.27 2.59 7.13 92.87

AdjCoxChoice 50 0 4.64 90.70 2.69 1.97 7.33 92.67
50 15 4.73 90.63 2.72 1.92 7.45 92.55
50 30 4.93 90.49 2.78 1.81 7.71 92.30

100 0 4.72 90.46 2.58 2.24 7.30 92.70
100 15 4.85 90.37 2.5 2.28 7.35 92.65
100 30 4.89 90.24 2.56 2.32 7.45 92.56
200 0 4.83 90.21 2.48 2.48 7.31 92.69
200 15 4.89 90.1 2.4 2.61 7.29 92.71
200 30 4.86 90.28 2.44 2.42 7.30 92.70

LogRank(t0) 50 0 4.64 90.70 1.06 3.60 5.70 94.30
50 15 4.73 90.63 1.08 3.56 5.81 94.19
50 30 4.93 90.49 0.93 3.65 5.86 94.14

100 0 4.72 90.46 1.07 3.75 5.79 94.21
100 15 4.85 90.37 1.01 3.78 5.86 94.15
100 30 4.89 90.24 0.97 3.9 5.86 94.14
200 0 4.83 90.21 1.01 3.94 5.84 94.15
200 15 4.89 90.1 0.99 4.02 5.88 94.12
200 30 4.86 90.28 0.91 3.95 5.77 94.23

AFT 50 0 4.64 90.70 0.22 4.44 4.86 95.14
50 15 4.73 90.63 0.24 4.41 4.97 95.04
50 30 4.93 90.49 0.26 4.32 5.19 94.81

100 0 4.72 90.46 0.28 4.54 5.00 95.00
100 15 4.85 90.37 0.24 4.55 5.09 94.92
100 30 4.89 90.24 0.22 4.66 5.11 94.90
200 0 4.83 90.21 0.23 4.73 5.06 94.94
200 15 4.89 90.1 0.24 4.77 5.13 94.87
200 30 4.86 90.28 0.26 4.6 5.12 94.88

Independent tests 4.75 90.25 0.25 4.75 5.00 95.00

The ‘Cox PH’ columns display the percentage of runs for which pG&T > 0.05 and subsequently, the Cox PH model
determined the treatment effect to be significant (pph 6 0.05) and not significant (pph > 0.05). The ‘alternative’
columns display the percentage of runs for which pG&T 6 0.05 and subsequently, the alternative test determined the
treatment effect to be significant (palt 6 0.05) and not significant (palt > 0.05). Finally, the ‘two-stage approach’
columns display the the percentage of runs for which the treatment effect was determined to be significant (pG&T >
0.05 and pph 6 0.05, or pG&T 6 0.05 and palt 6 0.05) and not significant (pG&T > 0.05 and pph > 0.05, or pG&T
6 0.05 and palt > 0.05). Finally, ‘independent tests’ show, for comparison, percentages expected if sequential tests
were fully independent.
PH, proportional hazards; AFT, accelerated failure time.
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Figure 1. Scatterplots show the joint distribution of p-values recorded in simulation study I, with red points
indicating significant outcomes (p-values6 0.05). Histograms show marginal distributions. A. With the Adjusted
Cox proportional hazards model as second-stage alternative and with sample size of 50 and 0% additional cen-
soring. B. With the log-rank(t0) test as second-stage alternative and with sample size of 100 and 15% additional
censoring at t D 24. C. With accelerated failure time as second-stage alternative and with sample size of 200 and

30% additional censoring at t D 24.

three sets of side by side scatterplots with marginal histograms, illustrating the joint distributions of G&T
p-values with the p-values obtained from the Cox PH model and the second-stage alternative model. The
top row of scatterplots (Figure 1(A)) corresponds to the results summarized in the first row of Table I:
with sample size of 50, no additional censoring and the Adjusted Cox PH model with f .t/ D log.t/ as
the alternative. Figure 1(B) corresponds to the scenario with sample size of 100, 15% additional censor-
ing at t D 24 and the log-rank.t0/ test as the second-stage alternative. Finally, Figure 1(C) corresponds
to the scenario with sample size of 200, 30% additional censoring at t D 24 and the AFT. The results of
simulation study I can be summarized as follows:

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1042–1056
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(1) Small sample size leads to bias of the G&T test. Consider the results for when there is no
additional censoring. With a sample size of 50, the G&T test failed to reject the null hypothesis
of PH for 95.34% (D 4.64% + 90.70%) of the 100,000 simulation runs. Although this is only
slightly higher than the expected 95.00%, a careful inspection of a histogram of the G&T p-values
(Figure 1(A), top histograms) suggests that this cannot be entirely attributed to sampling error: the
G&T p-values do not appear to be uniformly distributed, with fewer values less than or equal to
0.05 than expected. Recall that the G&T test statistic is only asymptotically !21. Therefore, this
may be largely due to the small sample size of 50. In fact, the non-uniformity is less apparent in the
simulations with sample size of 100 (95.18% rejection rate) and in simulations with sample size of
200 (95.04% rejection rate). Indeed the equivalent histogram in Figure 1(B) (sample size 100) is
substantially less skewed and in Figure 1(C) (sample size of 200) the G&T p-values appear essen-
tially uniform. Results with additional censoring show similar results. Finally, it is worth noting that
in additional simulations, not presented here, in which the G&T g.t/ was set as the left-continuous
version of the KM curve, the small sample bias was also present though to a lesser degree.

(2) Correlation between the G&T test and the adjusted Cox PH model results in substantial bias.
Once again, consider the results for when there is no additional censoring and a sample size of 50.
Among the 4.66% (D 2.50% + 2.16%) of runs for which pG&T 6 0:05, more than half were found
to be significant by the adjusted Cox PH model

#
2:50%
4:66% # 10:7

20

$
. This represents a rejection rate

more than 10 times the expected rate under independent tests
#
0:25%
5:00% D 1

20

$
. Clearly, the adjusted

Cox PH model and the G&T tests are not independent. This is confirmed by inspecting the left scat-
terplot of Figure 1(A). The correlation between of the adjusted Cox PH model and the G&T test
results in a type-I error rate of 7.14%, well above the desired 5.00%. The bias appears to diminish
with larger sample sizes, albeit not dramatically

#
2:37%
4:82% # 9:8

20 , with nD100 and 2:37%
4:82% # 9:3

20 , with
n D 200 /. Results with additional censoring show similar results. With the data-driven choice of
the f .t/ (AdjCoxChoice), the bias is even greater: type-I error rates are recorded between 7.29%
and 7.71%.

(3) Correlation between the G&T test and the Log-rank(t0) test results in modest bias. The
Log-rank(t0) test showed bias similar to the adjusted Cox PH model, although to a much lesser
degree: type-I error rates ranged from 5.70% and 5.88%. Figure 1(B) left scatterplot shows that
the p-values from the log-rank(t0) test are indeed correlated with the G&T p-values (Pearson
correlationD 0.16).

(4) No bias is observed with the AFT model. The two-stage approach with the AFT model as the
alternative to the Cox PH model appears relatively safe from bias, with type-I error rates recorded
between 4.86% and 5.19%. The lack of bias can be attributed to the fact that the p-values obtained
from the AFT model are not correlated with those obtained from the G&T test, see Figure 1(C).
Rather, the p-values obtained from the AFT model are highly correlated to those obtained from
the Cox PH model (Pearson correlation # 0.99). This indicates that for the vast majority of the
100,000 simulation runs, the AFT model is essentially the same test for significance as the Cox
PH model. Thus, the main difference between the two methods is not whether a treatment effect
is deemed significant. Rather, the difference is in the type of treatment effect inferred: with the
AFT model, it need not be constant over the follow-up time. Although this is an encouraging result,
recall that the AFT model requires that event-times follow a pre-specified distribution and that,
in this simulation study, the Weibull distribution was correctly specified. Simulation studies by Li
et al. [26] show that model misspecification with the AFT model can lead to inflated type-I error
and a substantial reduction in power, particularly when the pre-‘miss’-specified distribution is the
Weibull distribution.

The results obtained from the additional simulation studies with event-times simulated from two different
Weibull distributions (identical in all other aspects) show very similar outcomes, see Table II.

3. Correcting for bias by incorporating resampling methods

3.1. Three resampling methods

Permutation adjustment is a popular resampling method for obtaining non-biased p-values [27]. In order
to overcome the bias encountered by the two-stage procedure, we consider two straightforward per-
mutation adjustments: top-down and conditional. Intuitively, the conditional permutation adjustment
conditions on the outcome of the G&T test while the top-down permutation (TDP) adjustment repeats
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the entire two-stage procedure. In these two methods, significance of treatment effect is determined by
a permutation-adjusted p-value, regardless of whether the assumption of PH is rejected. In addition, we
consider an alternative two-stage approach, proposed by Qui and Sheng [1], which incorporates a boot-
strap adjustment. In this method, no test for PH is administered and the interpretation of a significant
treatment effect must be carefully considered. What is more, the method does not provide a point esti-
mate for the magnitude of the treatment effect nor does it allow for the possibility of including secondary
additional covariates in the inference. The three methodologies are described in the three algorithms in
the succeeding text.

TDP adjustment
For j in 1 to J , where J is large:

(1) Permute the covariate (treatment) labels of the original data, to yield permuted assignments
to each of the responses; denote the permuted data as QDj .

(2) Apply the common two-stage approach to QDj , testing for PH with ˛G&T significance level.
(3) Obtain a p-value for a test of no covariate (treatment) effect; denote this as Qpj .

Our TDP-adjusted p-value, pTDP , is the proportion of those Qpj s, which are smaller or equal to
the p-value obtained on the basis of an analysis of the original data under the common two-stage
approach (testing for PH with ˛G&T significance level), p. pTDP determines the strength of
evidence against H0. Let 1.A/ denote the indicator function for event A;

pTDP D
JX
jD1

1
#
Qpj 6 p

$
J

: (4)

Calibration: Modifying the significance level of the G&T test, ˛G&T , may allow one to calibrate
the method to favor power under different alternatives.

Conditional Permutation (CP) adjustment
For j in 1 to J , where J is large:

(1) Permute the covariate (treatment) labels of the original data, to yield permuted assignments
to each of the responses; denote the permuted data as QDj .

(2) Apply the common two-stage approach to QDj .
(3) Obtain a p-value for a test of no covariate (treatment) effect; denote this as Qpj . Record the

p-value from the G&T test; denote this as Qp.G&T /j . Let 1.G&T /j define rejection by
the G&T test: 1.G&T /j D 1. Qp.G&T /j 6 ˛G&T /.

The conditional permutation test uses the separate distributions of Qpj for which 1.G&T /j D 0
and D 1 to construct a p-value, with the choice of conditional distribution reflecting the result
obtained in the original analysis. Let p denote the p-value obtained on the basis of an analysis
of the original data under the common two-stage approach, and 1.G&T / be an indicator for the
rejection of the PH assumption (by the G&T test with significance level ˛G&T ). Then,

pCP D
X

j W1.G&T /jD1.G&T /

1. Qpj 6 p/
#fj W 1.G&T /j D 1.G&T /g : (5)

Calibration: Modifying the significance level of the G&T test, ˛G&T , may allow one to calibrate
the method to favor power under different alternatives.

3.2. Simulation study II

In order to assess the performance of the three methods considered, we simulated data under the null
model, under a model of PH, and a model of non-PH, as we wish to evaluate both size and power of the
procedures. Event-times are simulated from the Weibull distribution as in simulation study I. For both

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1042–1056
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the PH and and non-PH scenarios, parameters of the Weibull were set such that the odds ratio of survival
at t D 72 between groups is 1.75. A crossing of survival curves in the non-PH scenario occurs at t D 24.
In total, 100 event-times were simulated in each experiment, half of which are attributed to a ‘control
group’ (X D 0) and half to a ‘treatment group’ (X D 1). The three sample sizes and three censoring sce-
narios employed in simulation study I are once again considered. One thousand permutation resamples
were performed in each of 10,000 simulation runs to evaluate type-I error and power. We applied both
TDP and CP adjustment to adjusted Cox PH model with time-varying coefficients with f .t/ D log.t/,
and with ˛G&T D 0:05 and ˛G&T D 0:02. For implementing the Q&S method, we ran 500 bootstrap
resamples with tuning parameter $ D 0:1. We proceeded with equally distributed significance levels for
each stage, ˛1 D ˛2, (Q&S1), as well as unequally distributed levels, ˛1 D 0:04, (Q&S2).

Qiu & Sheng’s (2008) two-stage approach (Q&S)

(1) Test for evidence against the null by unweighted log-rank test. (The unweighted log-rank
test is equivalent to a LRT test for covariate effect using the Cox PH model except in
cases when equal event-times have been observed. In this event, the tests are asymptoti-
cally equivalent.) If significant at the ˛1 level,H0 is rejected. If non-significant, proceed to
stage 2.

(2) Test for evidence against the null by employing the Q&S-weighted log-rank test. The
weights are negative prior to the supposed crossing point of the hazards and positive after-
wards and derived such that the test statistic is asymptotically independent of the first stage
log-rank test statistic. Because the crossing point is unknown, the test statistic is evaluated
with every potential crossing point, and the crossing point for which the test statistic is
the greatest is chosen for implementing the test. The set of potential crossing points can be
restricted to a smaller, more reasonable set by assigning the $ tuning parameter accordingly,
see [1] for details. The critical value of the null distribution of this maximal test statistic is
estimated by bootstrapping the second stage. If significant at the ˛2 level, H0 is rejected.
Otherwise, one fails to reject H0. Because of the asymptotic independence of the tests at
the first and second stages, Q&S define the overall significance level ˛ as

˛ D ˛1CP rH0.reject in stage 2jfail to reject in stage 1/.1" ˛1/
D ˛1C ˛2.1" ˛1/:

(6)

For a given ˛, and ˛1 6 ˛, we take ˛2 D .˛ " ˛1/=.1 " ˛1/. The p-value of the entire
procedure is then

p " valueD
'
p1 , ifp1 6 ˛1;
˛1C p2.1" ˛1/ , otherwise. (7)

Calibration: Modifying the significance levels of the first and second stages, ˛1 and ˛2, may
allow one to calibrate the method to favor power under different alternatives.

3.3. Results of simulation study II

Table III summarizes the results of ‘simulation study II’, listing the percentage of runs for which the null
hypothesis was rejected (‘significant’), in each of the scenarios under investigation. The results can be
summarized as follows:

(1) All methods of adjustment show correct type-I error. With no adjustment, type-I error was
recorded between 7.46% and 7.77%. All re-sampling methods of adjustment recorded type-I error
much closer to the desired level of 5%, between 4.79% and 5.87%.

(2) Permutation methods show high yet inconsistent power. Comparing the two permutation-
adjusted methods, with ˛G&T D 0:05, CP adjustment has somewhat higher power when the true
model is PH (a significant result was established about 10% more often). On the other hand, under
the alternative of non-PH, the TDP adjustment has substantially higher power (in 5/9 cases, a sig-
nificant result was established more than twice as often). Therefore, we cannot conclude that one
method consistently outperforms the other. Calibration by means of adjusting the ˛G&T level from
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0:05 to 0:02 yields only an incremental increase in power under the alternative of PH while resulting
in a substantial reduction of power under the non-PH alternative.

(3) Properly tuned, the Q&S method achieves high and consistent power. When ˛1 D ˛2, the
Q&S two-stage method is not quite as powerful as the common two-stage approach with TDP.
When available power is partitioned such that ˛1 D 0:04, the Q&S method is somewhat more
powerful than the TDP in detecting a treatment effect under the PH alternative (a significant result
was established about 4–9% more often), whereas somewhat less powerful under the non-PH
alternative. With regard to how the Q&S method compares to the CP method: greater power is
achieved under PH with CP, whereas under non-PH, the CP method is substantially less powerful.
Despite the fact that, given either the PH or non-PH alternative, the Q&S method fails to achieve
greater power than the best performing permutation method, it arguably achieves a better balance
when ˛1 and ˛2 are appropriately tuned. When calibrated such that ˛1 D ˛2, the method appears
less favorable. This suggests that proper tuning of ˛1 and ˛2, based on a priori expectations about
the likelihood of the alternative, is crucial for maximizing power.

4. Conclusion

Although countless alternatives to the Cox PH model have been thoroughly studied in the survival analy-
sis literature, the prevailing practice of the ‘common two-stage approach’ requires an understanding not
only of how these alternatives compare with the Cox model but also of how they act alongside the Cox
model. As we have demonstrated, employing certain alternatives within the common two-stage approach
results in a significant inflation of type-I error, which should not be ignored.

Although only a handful of alternatives were investigated, these serve as examples of the methods
advocated for use in precisely the situation we examined [3, 8, 9]. Although the AFT appeared non-
problematic, we stress that there are two main drawbacks to consider with this method. First, the AFT
cannot accommodate data with crossing survivor curves. Second, an appropriate distribution for the
event-times must be specified prior to fitting the model. It would be very useful to investigate the alter-
native of the accelerated hazards model, which has the ability to properly account for both non-PH and
crossing survival survivor curves [28].

The importance of accounting for model uncertainty, which, as Shepherd [19] wrote ‘has been known
for years, yet [remains] largely ignored’, clearly deserves further attention in the survival analysis lit-
erature. Although the issue has been somewhat addressed in the clinical trials literature, appropriate
remedies are misunderstood; see for example Proschan and Waclawiw [29] who suggest that, when
assumptions underlying the original method are found to be suspect, investigators demonstrate signifi-
cant treatment effect by several alternative methods. As we have discovered—regardless of the number
of alternative methods which demonstrate a significant effect—unacceptable bias will occur whenever
sequential methods are not fully independent. A more appropriate recommendation would be to preplan
for any possibility that model assumptions may be violated. In other words, one should establish, before
obtaining any data, a hypothesis testing protocol which specifies, and accounts for, any alternative analy-
sis to be employed in the event that model assumptions are suspect. For even if the observed data are not
found to be in violation of the PH assumption, a modification (of some form or another) must be made to
the significance test that accounts for what would have been carried out had PH been suspect. The sim-
ulation studies presented in this paper demonstrate that this is a necessary action to control type-I error.
Unfortunately, as we have seen with the permutation adjustment methods, common ways to account for
non-independent sequential tests may substantially impact testing power.

Given the immense expense required to obtain data, anyone working to determine efficacy of a new
treatment in a clinical trial will no doubt be reluctant to adopt any approach, which substantially com-
promises power. When one is confident that the PH holds, a conditional permutation adjustment is not
unreasonable, as power remains high. However, if researchers are a priori convinced that the data will
display PH, the protocol might simply specify that the only significance test considered will be that of
the Cox PH significance test for treatment effect. If one is confident that the data will exhibit non-PH, a
TDP adjustment is not unreasonable. Alternatively, the protocol might specify that only one significance
test, robust to departures from PH, will be will be considered.

The problematic and most likely scenario is when one cannot, with a high degree of confidence, deter-
mine the nature of the treatment effect before obtaining the data. In such a situation, neither permutation
adjustments were found to be entirely favorable. Recent developments such as the alternative two-stage
approach of Q&S, while not without their limitations, suggest the way forward.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 1042–1056
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