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Ideally, a meta-analysis will summarize data from several unbiased studies.

Here we look into the less than ideal situation in which contributing studies

may be compromised by non-differential measurement error in the exposure

variable. Specifically, we consider a meta-analysis for the association between

a continuous outcome variable and one or more continuous exposure vari-

ables, where the associations may be quantified as regression coefficients of a

linear regression model. A flexible Bayesian framework is developed which

allows one to obtain appropriate point and interval estimates with varying

degrees of prior knowledge about the magnitude of the measurement error.

We also demonstrate how, if individual-participant data (IPD) are available,

the Bayesian meta-analysis model can adjust for multiple participant-level

covariates, these being measured with or without measurement error.
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1 | INTRODUCTION

Increasingly often, traditional meta-analysis methods
are used to synthesize results from observational stud-
ies such as epidemiological surveys, cohort studies,
and diagnostic test accuracy studies.1,2,3 Observational
studies are, by definition, non-randomized and are
notoriously prone to a wide range of biases, including

selection bias and bias due to unobserved con-
founding.4 One important bias that receives relatively
little attention is measurement bias. Since exposure
variables in an observational study are typically mea-
sured using imperfect tools (e.g., questionnaires, sur-
veys, public health records), results are susceptible to
“bias caused by measurement error.”5 Our focus will
be on measurement error which we define as the
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error due to inaccurate measuring of the exposure
variable(s).

If the measurement error affecting a particular
study is of known magnitude, adjustment for measure-
ment bias can be achieved by modifying the study's
effect size estimate and uncertainty interval prior to
its inclusion in a meta-analysis.6 Typically, however,
the magnitude of measurement error in any particular
study is unknown, and appropriate adjustments are
rarely done.7,8 To be clear, issues of measurement
error are not restricted to observational studies.
Indeed, measurement error is potentially problematic
for a wide range of research studies regardless of
study design. However, the assumption of no measure-
ment error (or that measurement error does not affect
the results) becomes more difficult to defend when the
exposure of interest is not randomized or when vari-
ables of interest are difficult to quantify (e.g., no gold
standard measurement tool exists, social constructs,
stigmatized behaviors).

In a meta-analysis of observational studies, failure to
acknowledge and appropriately adjust for the possibility
of measurement error amongst contributing studies will
no doubt weaken or even invalidate the overall results.9

Yet measurement error has received relatively little
attention in the meta-analysis literature. Hunter and
Schmidt discuss various pragmatic statistical approaches
to correct for the impact of known measurement error10

(and see more recently Wiernik et al.11). While practical,
these approaches fall short if the degree of measurement
error is unknown. Other work includes Carroll et al.12

who consider the merits of various attenuation factors
to correct for measurement error in a meta-analysis.
These methods are developed “[a]ssuming that data are
available for consistent estimation of [the attenuation
factors].”12 When such data are unavailable, the pro-
posed attenuation factors fail to provide adequate
adjustment.

In the applied literature, Zeisser et al.13 discuss
the impact of likely exposure misclassification
(i.e., measurement error of a binary exposure variable)
in a meta-analysis estimating the relationship between
alcohol consumption and breast cancer. More recently,
Lian et al.14 introduce Bayesian meta-analysis models
for binary outcomes accounting for exposure mis-
classification. These models are well designed but do
not consider the possibility of measurement error in a
continuous exposure or how to address continuous
outcome data.

Bayesian methods for handling measurement error
are well established for single studies and offer “a num-
ber of statistical advantages”15 due to their inherent flexi-
bility to handle more complicated data structures.

Bayesian methods also offer a “number of specific advan-
tages” for meta-analysis; see Sutton and Abrams.16 For
instance, unlike Bayesian models, frequentist meta-anal-
ysis models are known to have difficulty estimating vari-
ance parameters if these parameters are near-zero,
particularly when sample sizes are small.17,18 Also, Bayes-
ian models also offer substantial flexibility for handling
complicated data structures that may arise with multiple
covariates and the possibility of measurement error.19

(That being said, frequentist models are often easily
implemented with standard statistical packages whereas
Bayesian models may require a certain amount of
customization20).

In this paper, we consider a meta-analysis of obser-
vational studies with continuous outcome and exposure
variables in which (a subset of) contributing studies
may be compromised by a potentially unknown degree
of non-differential measurement error, that is, error in
the exposure variable(s) that is conditionally indepen-
dent of the outcome variable.21 We then develop a
Bayesian hierarchical model to adjust for the measure-
ment error when either aggregate study-level data or
individual participant-level data (IPD) are available. In
Section 2, we outline a proposed Bayesian framework
for the case of meta-analysis with measurement error in
a single exposure variable and in Section 3, we general-
ize this framework for the case of multiple explanatory
variables. We conclude with a summary of findings in
Section 4.

2 | META-ANALYSIS OF SIMPLE
LINEAR REGRESSION
AGGREGATE DATA

2.1 | A traditional random-effects meta-
analysis

Suppose we have data from K independent observational
studies for a meta-analysis and, for each of these studies,
the exposure and the outcome are continuous variables.
We begin by describing some basic distributional
assumptions for the underlying data.

Let X k½ �
j ,Y k½ �

j

� �
be the exposure and outcome for

the j-th observation in the k-th study. We assume
that the exposure and outcome are related by means
of a conditional Normal distribution such that:
Y k½ �

j jX k½ �
j �N α k½ � þβ k½ �X k½ �

j ,σ k½ �2
� �

; for k¼ 1,…,K and j in
1,…,n k½ �. Furthermore, we assume that each study has its
own exposure distribution governed by a Normal distri-
bution: X k½ �

j �N μ k½ �,λ k½ �2� �
. Finally, the study specific

parameters, α k½ � and β k½ �, are related to one another
such that:
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α k½ �

β k½ � �N
ξ

θ

 !
,

ω2 ρωτ

ρωτ τ2

 ! !
: ð1Þ

for k¼ 1,…,K, where ξ is the overall mean intercept
parameter, ω2 represents the variance in intercepts across
studies, θ is the overall mean slope parameter (and the
main “parameter of interest”), τ2 is the variance of slopes
across studies, and ρ is the correlation of the regression
coefficients.

For each of the K studies, a standard simple linear
regression model could be fit to the outcome and exposure
data to obtain least-squares parameter estimates, α̂ k½ � and
β̂

k½ �
, which will follow, according to standard theory,22 a

bivariate Normal distribution such that, for k¼ 1,…,K:

α̂ k½ � α k½ �

β̂
k½ �

β k½ � �N α k½ �

β k½ �

 !
,

Σ k½ �
11 Σ k½ �

12

Σ k½ �
12 Σ k½ �

22

0
@

1
A

0
@

1
A, ð2Þ

where : Σ k½ �
11 ¼

λ k½ �2þμ k½ �2� ��σ k½ �2

λ k½ �2�n k½ � ; ð3Þ

Σ k½ �
12 ¼�μ k½ � � σ k½ �2

λ k½ �2�n k½ � ; ð4Þ

and Σ k½ �
22 ¼

σ k½ �2

λ k½ �2�n k½ � : ð5Þ

A meta-analysis will typically combine the summary sta-
tistics reported in each contributing study to obtain an
overall estimate for the parameter(s) of interest. If the
value of β̂

k½ �
and its standard error, se β̂

k½ �� �
, are available

for k¼ 1,…,K, the primary parameter of interest, θ, can
be estimated in a standard univariate random-effects
meta-analysis23 in which:

β̂
k½ � �N θ, se β̂

k½ �� �� �2
þ τ2

� �
: ð6Þ

Or if, in an admittedly rare situation (Becker et al.24 point
to Crouch25,26 and Lau et al.27 as examples), data are also
available for α̂ k½ �, se α̂ k½ �

� �
and σ̂ k½ �2 for k¼ 1,…,K, one

may fit a bivariate meta-analysis model28,29 in which:

α̂ k½ �

β̂
k½ �

 !
�N ξ

θ

� �
,

Σ k½ �
11 þω2 Σ k½ �

12 þρωτ

Σ k½ �
12 þρωτ Σ k½ �

22 þ τ2

 ! !
, ð7Þ

where Σ k½ �
11 , Σ

k½ �
12 , and Σ k½ �

22 are given by Equations (3),
(4), and (5) with the μ k½ �, σ k½ �, and λ k½ � parameters

assumed to be known (i.e., measured without error) and
equal to:

σ k½ � ¼ σ̂ k½ �, λ k½ � ¼ σ̂ k½ �

se β̂
k½ �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n k½ � �1ð Þ
p , ð8Þ

and

μ k½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se α̂ k½ �
� �

se β̂
k½ �� �

0
B@

1
CA

2

� σ̂ k½ �2

n k½ � � se β̂
k½ �� �� �2

vuuuut : ð9Þ

Note that with a sufficient amount of data, the uncer-
tainty surrounding the μ k½ �, σ k½ �, and λ k½ � parameters
will be quite small,16 and the simplifying assumption
that the μ k½ �, σ k½ �, and λ k½ � parameters are known should
make little practical difference.18 However, if one
wished to properly account the additional uncertainty
of μ k½ �, σ k½ �, and λ k½ �, a suitable strategy would be to cre-
ate pseudo-values for X k½ �

j ,Y k½ �
j

� �
, for k¼ 1,…,K and j in

1,…,n k½ �, using the observed sufficient statistics
(if these were all available). This pseudo individual
participant level data would have the same likelihood
as the true unknown underlying IPD and could then
be fit—as if it were the true data—with an IPD-meta-
analysis model (as in Section 3.1); see Pap-
adimitropoulou et al.30

Inference for either the univariate or bivariate meta-
analysis (i.e., for either (6) or (7)) can be done within
either a frequentist or a Bayesian framework.24,31,32

However, as discussed in the introduction, there are
several reasons why a Bayesian approach may be
advantageous. A Bayesian model requires defining
priors for all of the unknown parameters and, for better
or worse, the performance of any Bayesian estimator
will depend on the choice of these priors. Particularly
when few data are available, the choice of priors
can substantially influence the posterior.33,34,35 In the
examples considered throughout this paper, our strategy
will be to adopt wide Normal distributions (with vari-
ance of 100) for the mean parameters, weakly informa-
tive half-Cauchy priors (with scale parameter of 2) for
the variance parameters, and a uniform distribution
for the correlation parameter; following the recommen-
dations of Polson et al.36 and the simulation results of
Williams et al.32

Before going on to discuss measurement error, let us
briefly demonstrate how standard Bayesian univariate
and bivariate meta-analysis models (BayesMA) can be
used in an analysis of some simple illustrative data.

CAMPBELL ET AL. 3



2.1.1 | Example: The NELS88 dataset

The NELS88 dataset has been used previously as an
example dataset by Becker et al.24 and is from a survey of
U.S. grade 10 high-school students in 1988 from over
1000 schools. Becker et al.24 include for analysis only the
13 schools with samples of a minimum of 45 students
(n k½ � ≥ 45;k¼ 1,…,13) and consider each school as an
independent study for meta-analysis. We will use the
same subset of schools for our example analysis. The out-
come of interest, Y k½ �

j , will be the science achievement test
score, and the exposure of interest, X k½ �

j , will be the read-
ing test score, for the j-th student in the k-th school. The
total sample size is N ¼PK

k¼1n
k½ � ¼ 664 students from

K ¼ 13 different schools.
Table A1 displays the aggregate data from the

NELS88 dataset required for both the univariate and
bivariate meta-analyses. We fit these data with
BayesMA models defined in Section 2.1 with the follow-
ing priors:

θ�N 0,100ð Þ; (mean of 0, variance of 100);
ξ�N 0,100ð Þ;
τ�half�Cauchy 0,2ð Þ, τ>0; (location of 0, scale of 2);
ω�half�Cauchy 0,2ð Þ, ω>0; and
ρ�Uniform �1,1ð Þ.
All models in this paper are fit using the probabilistic

programming language JAGS which employs the Gibbs
sampling Markov chain Monte Carlo (MCMC) algorithm
and is compatible with the R statistical programming lan-
guage.37 Each model is fit based on 100,000 Monte Carlo
draws from each of three chains (thinning of 10), and for
each we report posterior medians and equal-tailed 95%
credible intervals. Note that the BayesMA model
(or something similar) could be easily fit in a frequentist

manner with standard statistical packages. However, this
is not the case for the BMEMA model we introduce in
Section 2.2.

Results for the univariate and bivariate models are
very similar but not identical. For the univariate model,
we obtain posterior medians: θ̂¼ 0:56 with 95% equal-
tailed credible interval of CI θð Þ95% ¼ 0:49,0:62½ �; and
τ̂¼ 0:04. For the bivariate model, we obtain the posterior
medians: θ̂¼ 0:57 with 95% equal-tailed credible interval
of CI θð Þ95% ¼ 0:51,0:64½ �; τ̂¼ 0:04; ξ̂¼ 5:40 with 95%
equal-tailed credible interval of CI ξð Þ95% ¼ 4:05,6:86½ �;
ω̂¼ 1:85; and ρ̂¼ 0:06. Figure 1 displays a forest plot
summarizing the primary analysis results for the bivari-
ate model.

2.2 | Adjusting for non-differential
measurement error

Now suppose that each study is hampered by a certain
amount of classical and non-differential measurement
error. The assumption of non-differential measurement
error refers to the assumption that the distribution of the
surrogate exposures, X*, depends only on the actual
exposure variables, X , and not on the response variable
or other variables in the model. In other words, we
assume that the conditional distribution of X* jX ,Y� �

is
identical to the conditional distribution of X*jX� �

.
In this situation, we wish to determine the relation-

ship between the outcome, Y , and the exposure, X , with
data based instead on measuring Y and X*. Ignoring the
measurement error in such a situation will bias the esti-
mates of the regression slope coefficients towards the null
(i.e., will bias β̂ towards 0); see Hutcheon et al.38 for an

FIGURE 1 Forest plot for the meta-analysis of the NELS88 aggregate data (Table A1). The K ¼ 13 black squares correspond to the β̂
k½ �

values, for k¼ 1,…,K; with horizontal lines corresponding to symmetrical 1:96� se β̂
k½ �� �

confidence intervals. The BayesMA posterior

estimate of θ is plotted as a diamond (labeled “Summary”), the lateral points of which indicate the equal-tailed 95% credible interval (i.e., the

2.5% and 97.5% quantiles) for this estimate
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excellent review. We assume the vector of independent
surrogates, X*, arises from a classical additive measure-
ment error model:

X k½ �*
j jX k½ �

j �N X k½ �
j ,ϕ k½ �2

� �
, forj ¼ 1,…,n k½ �, ð10Þ

for k¼ 1,…,K, where ϕ2 k½ � corresponds to the variance in
measurement error for the k-th study. To be clear, for
each study, the average measurement error is zero but
individual measurements can be biased, such that:

X k½ �*
j �N μ k½ �,λ k½ �*2

� �
ð11Þ

where λ k½ �*2 ¼ λ k½ �2þϕ k½ �2; for j = 1,…,n k½ � and
for k¼ 1,…,K .

Let γ k½ � ¼ λ k½ �2= λ k½ �2þϕ k½ �2� �¼ 1þϕ k½ �2=λ k½ �2� ��1
< 1 be

the “attenuation factor” for the k-th study, for k¼ 1,…,K .
The range of values for ϕ k½ � is therefore restricted to:
0≤ϕ k½ � ≤ λ k½ �*. Linear regression coefficients estimated for
each of the individual studies will be biased and governed
by a multivariate normal (MVN):

α̂ k½ �* α k½ �

β̂
k½ �*

β k½ � �ℳVN
α k½ � þ 1� γ k½ �� �

β k½ �μ k½ �

γ k½ �β k½ �

 !
,

Σ k½ �*
11 Σ k½ �*

12

Σ k½ �*
12 Σ k½ �*

22

0
@

1
A

0
@

1
A,

ð12Þ

where : Σ k½ �*
11 ¼ λ k½ �*2þμ k½ �*2� ��σ k½ �*2

λ k½ �*2�n k½ � ; ð13Þ

Σ k½ �*
12 ¼�μ k½ �*� σ k½ �*2

λ k½ �*2�n k½ � ; ð14Þ

and Σ k½ �*
22 ¼ σ k½ �*2

λ k½ �*2�n k½ � ; ð15Þ

where μ k½ �* ¼ μ k½ �; σ k½ �*2 ¼ σ k½ �2þ 1� γ k½ �� �
β k½ �2� �

λ k½ �2� �
; and

λ k½ �*2 ¼ λ k½ �2þϕ k½ �2, for k¼ 1,…,K.
If we ignore measurement error, then, for the param-

eter of interest θ, we will mistakenly target:

θ* ¼E γ k½ �β k½ �
� �

¼E 1þϕ k½ �2

λ k½ �2

 !�1

�β k½ �
( )

, ð16Þ

in place of θ¼E β k½ �� �
, for all k¼ 1,…,K. As such, if we

presume independence of β k½ � and ϕ k½ �,λ k½ �� �
, then

we have:

θ* ¼E γ k½ �
� �

θ: ð17Þ

This is intuitive: the attenuation factor induced by mea-
surement error in estimating the typical exposure-out-
come association is the expectation of the study-specific
attenuation factors. This suggests that an unbiased esti-
mate of the overall effect, θ, can be derived analytically if
one knows the cross-study average degree of measure-
ment error. In other words, it is not necessary to know
each individual value of ϕ k½ �, for k¼ 1,…,K . One need
only know where the distribution of the ϕ k½ �s is centered
in order to adequately adjust the meta-analytic point esti-
mate of θ in the presence of measurement error.

The bias in estimating τ2 is perhaps less intuitive. If
we ignore the presence of measurement error, then our
estimation procedures will mistakenly target:
τ*2 ¼Var β k½ �*� �¼Var γ k½ �β k½ �� �

, for all k¼ 1,…,K . Invoking
independence of γ k½ � and β k½ �, we have:

τ*2 ¼ E γ k½ �
� �n o2

τ2þVar γ k½ �
� �

τ2þθ2
� �

, ð18Þ

or alternatively: τ*2 ¼E γ k½ �2� �
τ2þVar γ k½ �� �

θ2. The first
term alone speaks to underestimating cross-study hetero-
geneity if we ignore measurement error, since we know
0<E γ k½ �2� �

<1, for all k¼ 1,…,K . However, the second
term could counteract this. More precisely, if the magni-
tude of the cross-study variation in measurement error (i.
e., Var γ k½ �� �

) and/or the average effect size (i.e., θ) are
large enough, we could end up overestimating cross-
study heterogeneity instead. It follows that, without any
cross-study heterogeneity, that is, when τ2 ¼ 0, Equa-
tion (18) reduces to τ*2 ¼Var γ k½ �� �

θ2. Therefore, if the
cross-study variability in measurement error is suffi-
ciently large, one could erroneously select a random-
effects model (τ2 > 0) instead of the correct fixed-effects
model (τ2 ¼ 0).

For the bivariate model, the bias in estimating ξ and
ω2 must also be considered. If we ignore measurement
error, then our estimation procedures will mistakenly tar-
get, for k¼ 1,…,K:

ξ* ¼E α k½ � þ 1� γ k½ �
� �

β k½ �μ k½ �
n o

¼ ξþE 1� γ k½ �
� �

β k½ �μ k½ �
n o

, ð19Þ

and

ω*2 ¼Var α k½ �*
� �

¼Var α k½ � þ 1� γ k½ �
� �

β k½ �μ k½ �
� �

: ð20Þ
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The correlation between different elements of the data
will also be impacted by measurement error. For exam-
ple, in the absence of measurement error (i.e., when
γ k½ � ¼ 1), the estimators, β̂

* k½ �
and λ̂

* k½ �
will be entirely

independent. However, in the presence of heterogeneous
measurement error, this is no longer the case. A large
amount of measurement error will lead to a larger value
of λ̂

* k½ �
and simultaneously to a smaller value of β̂

* k½ �
. As

such, if the k-th study has a relatively (as compared to

the other studies) small value of β̂
* k½ �

and a relatively

large value of λ̂
* k½ �

, this suggests that (relative to other
studies) it may be compromised by a substantial degree
of measurement error.

The standard BayesMA models described in Sec-
tion 2.1, can be adapted to account for non-differential
measurement error in a relatively straightforward man-
ner. The univariate BMEMA (Bayesian model for Mea-
surement Error in Meta-Analysis) can be defined in two
parts as:

β̂
k½ �* j β k½ � �N γ k½ �β k½ �, se β̂

k½ �� �� �*2� �
and

β k½ � �N θ,τ2
� �

,

ð21Þ

where se β̂
k½ �� �

is the standard error for β̂ as reported by a
study potentially biased due to measurement error; and
where, if data for λ k½ �*2 are available, we can define:

γ k½ � ¼ 1þ ϕ k½ �2

λ k½ �*2�ϕ k½ �2� �
 !�1

: ð22Þ

The bivariate BMEMA model can also defined in two-
parts with the conditional bivariate normal likelihood for
α̂ k½ �*, β̂

k½ �*jα k½ �,β k½ �
� �

as specified by Equation (12), and the
bivariate normal likelihood for α k½ � and β k½ � as specified
by Equation (1).

Knowledge about the magnitude of measurement
error in a study may come from a variety of sources,
for example, replicate measurements, validation data, or
expert opinion. In some scenarios, one might have a
subset of studies for which γ k½ � is known and equal to
1 (i.e., have data from some studies known to be unaf-
fected by measurement error). We will focus on how one
might proceed under such a scenario. Without loss of
generality, suppose a subset of “gold standard” studies is
the first k0 studies, such that for k¼ 1,…,k0, we have
ϕ k½ �2 ¼ 0 and γ k½ � ¼ 1. Thus, in a situation where all studies
are known to be unbiased by measurement error, k0 will
equal K and the BayesMA and BMEMA models will be
identical.

For a scenario in which 0< k0 <K, our strategy will
depend on whether or not, for k¼ k0 þ1,…,K, data are
available for λ̂

k½ �*
, as this can serve as an upper bound on

ϕ k½ � (recall that: 0≤ϕ k½ � ≤ λ k½ �*). If λ̂
k½ �*

data is not avail-
able, we can simply specify a uniform prior on γ k½ �, such
that, for k¼ k0 þ1ð Þ,…,K:

γ k½ � �Uniform 0,1ð Þ: ð23Þ

Alternatively, if λ̂
k½ �*

is available for k¼ k0 þ1ð Þ,…,K, we
place an inverse-gamma prior on the study-specific ϕ k½ �2

parameters, such that:

ϕ k½ �2 � Inv-Gamma ζ1,ζ2ð Þ; and ζ1 �Exp δð Þ,
ζ2 �Exp δð Þ, ð24Þ

for k¼ k0 þ1ð Þ,…,K; and for ζ1 > 0 and ζ2 > 0. Note that
the mean and variance of the inverse-gamma distribution
have that, a priori, E ϕ k½ �2� �¼ ζ2= ζ1�1ð Þ and
Var ϕ k½ �2� �¼ ζ22= ζ1�1ð Þ2 ζ1�2ð Þ� �

. However, only values
of ϕ k½ �2 ≤ λ k½ �* will be consistent with the data. In order to
reflect very vague prior knowledge, we set δ¼ 0:1.

For a scenario in which k0 ¼ 0, things are not so
straightforward. Without any “gold standard” studies and
without any specific knowledge regarding the degree of
measurement error for each of the K contributing studies,
the parameters of interest may not be identifiable. With
this in mind, before moving on, we briefly consider an
asymptotic argument for so-called “partial identifiability”
by considering the degree to which θ can be estimated in
the presence of unspecified measurement error.

2.2.1 | Issues of identifiability

Our logic is based on similar arguments for partial
identifiability considered in Campbell et al.39 Presume
that a priori defensible information about the amount of
bias caused by measurement error in the k-th study is
expressed in the form: γ k½ � ∈ γ k½ �,1

h i
, where γ k½ � is an

investigator-specified lower bound for the k-th attenua-
tion factor. Then the set of possible values for β k½ �, given
β k½ �*, is restricted to:

Ik γ k½ �
� �

¼ β* k½ �

γ k½ � ,β
* k½ �

" #
: ð25Þ

To be clear, this represents the study-specific identifica-
tion interval for β k½ �. As n k½ � !∞, all values inside the
interval remain plausible, while all values outside are
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ruled out.40 This is the essence of the partial identification
inherent to this problem.

Thinking now about the meta-analytic task of com-
bining information, the γ k½ � could exhibit considerable var-
iation across studies while τ (i.e., the variation in β k½ �)
could be small. Suppose that τ does not exceed an investi-
gator-specified upper bound of τ, that is, τ≤ τ. Then an
identification region for θ can be specified as:

I γ,τ
� �

¼ θ : τ≤ τ,β k½ � ∈ Ik γ k½ �
� �

, 8k∈f1,…,Kg
n o

: ð26Þ

Again, the interpretation is direct: in the asymptotic
limit, all values of θ inside this interval are compatible
with the observed data, and all values outside are not.
The primary question of interest is whether this interval
is narrow or wide under realistic scenarios, since this
governs the extent to which we can learn about θ from
the data.

In general, evaluating (26) for given inputs is an exercise
in quadratic programming nested within a grid search,
hence can be handled with standard numerical optimiza-
tion. However, the special “fixed-effects” case of τ¼ 0 is
noteworthy. Mathematically, the case is much simpler,
with (26) reducing to I I γ,0

� �
¼ \ kIk γ k½ �

� ��
. As intuition

must have it, without heterogeneity, a putative value for
θ is compatible with the observed data if and only if it is
compatible with the data from every individual study.

To illustrate, consider a scenario with K ¼ 10 studies,
with θ¼ 1:0, and τ¼ 0, that is, β k½ � ¼ 1:0, for k¼ 1,…,10.
Suppose the observed β̂

k½ �*
values for these studies lie

equally spaced between 0.40 and 0.80, (since the unknown
γ k½ � values range between 0:40 and 0:80). Furthermore,
say the investigator pre-specifies γ k½ � ¼ 0:2 for all k. The
resulting study-specific identification intervals, Ik, are
depicted by the black vertical lines in the upper panel of
Figure 2. Also depicted by the green rectangle is the global
identification interval, that is, the intersection of the individ-
ual intervals. The global identification interval is indeed nar-
row, ranging from 0.8 to 2.0. Evaluating (26) for τ>0 can
be done via quadratic programming; see Appendix for
details. Figure 2 (lower panel) shows that, when τ¼ 0:5,
the global identification interval is much wider: 0.6–2.9.

In summary, depending on the upper limit in τ and
the range in γ k½ � values, that is, the “heterogeneity of
bias,” it appears that data can indeed contribute substan-
tial information about θ.

2.2.2 | Example: The NELS88* dataset

Returning now to our example with the NELS88 dataset,
we illustrate the impact of measurement error by

intentionally adding non-differential measurement error to
the data as described in Equation (10) so as to corrupt
the reading test scores for 8 out of the K ¼ 13 schools. As
such, the contaminated dataset, NELS88*, has k0 ¼ 5
schools for which the data are “clean.” We set ϕ k½ � ¼ 0,
for k¼ 1,…,5; and, for k¼ 6,…,13, increasing values from
1 to 12: ϕ 6½ � ¼ 1:00, ϕ 7½ � ¼ 2:57,…,ϕ 12½ � ¼ 10:43 and
ϕ 13½ � ¼ 12:00. Table A2 lists the aggregate data obtained
after adding measurement error to the reading scores. We
also list the values of ϕ k½ � and γ k½ � for reference.

We will fit both the univariate and bivariate BMEMA
models. For the univariate model, we suppose that data for
λ k½ �*s are unavailable and place a uniform prior on the γ k½ �

parameters as in (23). We also fit an additional bivariate
BMEMA model with δ¼ 0:5 instead of δ¼ 0:1 (for all ana-
lyses where K≠ k0) to see how sensitive results may be
to the chosen priors.

With the NELS88* dataset, we have that E γ k½ �� �¼
0:63 and Var γ k½ �� �¼ 0:15. Based on Equation (17), we
have that θ* ¼ 0:66�0:57¼ 0:36; and based on Equa-
tion (18), we have that
τ*2 ¼ 0:542�0:042þ0:15� 0:042þ0:572ð Þ¼ 0:05, or
τ* ¼ 0:22. Indeed, if we ignore the possibility of any mea-
surement error, we obtain, with the NELS88* dataset,
estimates similar to the numbers given by Equations (17)
and (18) (see Table A3, line 1): when measurement error
is added to the data, estimates for θ are biased down-
wards, while estimates for τ are biased upwards.

For the NELS88* data, cor β̂
* k½ �

, λ̂
* k½ �� �

¼�0:66,
whereas for the NELS88 data, cor β̂

k½ �
, λ̂

k½ �� �
¼�0:02. The

fact that the values of β̂
* k½ �

and λ̂
* k½ �

are negatively corre-
lated in the presence of heterogeneous measurement
error and independent otherwise suggests that by com-
bining data from several studies, the presence of bias cau-
sed by measurement error can be better identified (and
suggests the possibility of a simple diagnostic test for het-
erogeneous measurement error).

The estimates of θ̂¼ 0:56 and θ̂¼ 0:57 obtained with
the univariate and bivariate BayesMA models respec-
tively, with the “clean” NELS88 dataset (see Table A3,
line 2) serve as approximate targets. For the NELS88*
dataset, the bivariate BMEMA model, with δ¼ 0:1, and
with k0 ¼ 5, obtains an estimate of θ̂¼ 0:56, with 95%
credible interval of CI θð Þ95% ¼ 0:44,0:68½ � (see Table A3,
line 3). MCMC diagnostic plots are presented in the
Appendix and show little prior-posterior overlap
(PPO) which suggests that the prior is suitably over-
whelmed by the signal provided in the data; see
Figures A1 and A2. With the alternative prior speci-
fied by δ¼ 0:5, the bivariate model obtains an estimate
of θ̂¼ 0:54. The univariate model obtains an estimate of
θ̂¼ 0:52, with 95% credible interval of CI θð Þ95% ¼
0:39,0:66½ � (Figure 3).
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We also fit the Bayesian model to data from only the
first five schools that are known to be unaffected by mea-
surement error (see Table A3, line 4) and obtain, with the

bivariate model, θ̂¼ 0:55 with a notably wider credible
interval of CI θð Þ95% ¼ 0:41,0:73½ � (and similar results
with the univariate model). This suggests that the

FIGURE 2 Black vertical lines

correspond to study-specific

identification intervals (i.e., the

intervals for θ that are compatible

with data from the corresponding

study) and the green rectangle

corresponds to the global

identification interval. The upper

panel corresponds to assumption of

τ¼ 0 such that the global

identification interval is simply the

intersection of the individual study-

specific identification intervals. The

lower panel corresponds to τ = 0.50

[Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 3 Forest plot for the meta-analysis of the NELS88* aggregate data, with three summaries corresponding to line 1 (in which all

studies are assumed to be measurement error-free; k0 ¼ 13, K ¼ 13), line 4 (in which only the five studies known to be measurement error-

free are included in the analysis; k0 ¼ 5, K ¼ 5), and line 3 (in which the five studies known to be measurement error-free are included in the

analysis along with the eight studies comprised by measurement error; k0 ¼ 5, K ¼ 13) of Table A3. The five black full squares correspond to

the β̂
k½ �
values unaffected by measurement error; the eight empty squares correspond to the β̂

k½ �
values compromised by measurement error;

with horizontal lines corresponding to symmetrical 1:96� se β̂
k½ �� �

confidence intervals. The BMEMA posterior estimates of θ are plotted as

diamonds, the lateral points of which indicate the equal-tailed 95% credible intervals (i.e., the 2.5% and 97.5% quantiles) for these estimates
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data from the additional eight schools, while com-
promised by measurement error, may provide “added
value” and sharpen our inference.

We also note that knowing that the k¼ 1,…,5 schools
are untainted by measurement error is crucial to
obtaining appropriate estimates: the BMEMA models,
with k0 ¼ 0, obtain estimates of θ much too high: θ̂¼ 0:68
(for the univariate), 0.94 (for the bivariate with δ¼ 0:1),
and 0.75 (for the bivariate with δ¼ 0:5; see Table A3, line
5). These three estimates are quite different and this sug-
gests that, when there are no known “gold standard stud-
ies” to “anchor” the estimates, the chosen priors may
yield significant leverage.

Finally, note that if the BMEMA model is fit to the
original NELS88 data, we will end up slightly over-
estimating the θ parameter. For the bivariate model (with
δ¼ 0:1), we obtain θ̂¼ 0:58, with k0 ¼ 5, and θ̂¼ 0:61,
with k0 ¼ 0 (see Table A3, lines 6 and 7).

3 | META-ANALYSIS OF
MULTIVARIABLE LINEAR
REGRESSION

3.1 | In the absence of
measurement error

We can generalize the BayesMA models described in
Section 2 (in which each study can be summarized
as a simple linear regression) to a general case
where each study can be summarized as a multivari-
able linear regression. While this generalization is of
theoretical interest, in practice it may be unlikely to
have multiple different studies provide results from
exactly the same regression model. Should different
studies adjust for different subsets of covariates,
pooling their coefficients together in a meta-analysis
may not be appropriate.41 However, note that meta-
analytic methods to synthesize linear regressions with
different covariates have been developed; see for
example Yoneoka et al.42 and Debray et al.43

We denote X k½ �
j� as the Qþ1ð Þ-length row vector with

elements 1, and the Q covariates measured for the j-th
observation in the k-th observational study. Similarly,
we denote X k½ �

�q as the n k½ �-length column vector of values
of the q-th covariate for the k-th study. Finally the n k½ � �
Qþ1ð Þ design matrix, X k½ �, consists of n k½ � rows, one
for each observation in the k-th study: X k½ �

j�, for j in
1,…,n k½ �. Note that, in this multivariate setting, X k½ � is a
matrix with the first column consisting of 1s. We will
use X k½ �

�,�1 to denote the design matrix excluding the
column of 1s.

Suppose data from each study can be summarized as
a multivariable linear regression model such that, for
k¼ 1,…,K, and j in 1,…,n k½ �:

Y k½ �
j jX k½ �

j� �N X k½ �
j�β

k½ �,σ k½ �2
� �

, ð27Þ

where β k½ � ¼ β k½ �
0 ,β k½ �

1 ,…,β k½ �
Q

� �0

is the column-vector of
regression coefficients. We assume that each study has its
own exposure distribution governed by a multivariate
Normal distribution:

X k½ �
j,�1 �ℳVN μ k½ �,Λ k½ �

� �
, ð28Þ

where μ k½ � is a Q-length vector, and Λ k½ � is a Q�Q covari-
ance matrix. The random-effects meta-analysis model
can be summarized as:

β k½ � j θ,T�ℳVN θ,Tð Þ, ð29Þ

for all k¼ 1,…,K; where θ is a Qþ1ð Þ-length vector, and
T is a Qþ1ð Þ� Qþ1ð Þ covariance matrix. If we are able
to assume that the regression coefficients are a priori
independent, then T will be a diagonal matrix.

If individual participant data (IPD) are available,
the model will have many moving parts. For our
unknown parameters of interest (θ, T, β, σ, μ, Λ, and
T), and the data from K studies (we require: Y k½ �

j , and X k½ �
j�

for j in 1,…,n k½ �, and for k¼ 1,…,K), Bayes' theorem
states that:

p θ,T,β,σ,μ,Λjdatað Þ/ p dataj θ,T,β,σ,μ,Λð Þð Þp θ,T,β,σ,μ,Λð Þ

¼
YK
k¼1

Yn k½ �

j¼1

p Y k½ �
j jX k½ �

j�,β
k½ �,σ k½ �

� �
p X k½ �

j�jμ k½ �,Λ k½ �Þ
� on 

ð30Þ

If IPD are not available, and only aggregate data are
available, a simpler two-part model can be defined
whereby:

β̂
k½ � j β k½ � �ℳVN β k½ �,COV k½ �

� �
,whereCOV k½ �

¼ X k½ �TX k½ �
� ��1

σ k½ �2;and ð31Þ

β k½ � j θ,T�ℳVN θ,Tð Þ, ð32Þ

for k¼ 1,…,K; where COV k½ � is assumed available and
known for k¼ 1,…,K (this is analogous to the assumption
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in Section 2 that, for k¼ 1,…,K, μ k½ �, σ k½ �, and λ k½ � are
known).

3.2 | Adjusting for non-differential
measurement error

Suppose now that observed covariates are measured with
non-differential error such that:

X* k½ �
j,�1 ¼ℳVN X k½ �

j,�1,Φ
k½ �

� �
, ð33Þ

for j in 1,…,n k½ � and for k¼ 1,…,K; where Φ k½ � is a Q�Q
covariance matrix. Note that, Equation (33) is
analogous to Equation (10) in Section 2.2. Also
note that, if Φ k½ � is a diagonal matrix, then the
measurement error in any one covariate is entirely
independent of the measurement error in every other
covariate.

Multivariate measurement error can bias estimators
in unpredictable and unexpected ways. For instance,
Abel44 shows that, even if the q-th covariate, X�q, is
measured without error, one may still incorrectly
reject the null hypothesis of β k½ �

q ¼ 0, if X�q is corre-
lated with another covariate that is itself tainted
by measurement error. Since covariates may be
correlated to one another in many different ways,
it is difficult to anticipate the impact of multivari-
ate measurement error for general multivariate
settings.45

The multivariate BayesMA model outlined in Sec-
tion 3.1 can be adapted to account for measurement
error in one or several of the covariates. If IPD are
available,46 we can frame a flexible multivariate
BMEMA model by assuming that the covariates are
multivariate normal (but this could be modified as
needed) and defining the following three-part model
structure:

X k½ �
j,�1 �ℳVN μ k½ �,Λ k½ �

� �
, ð34Þ

X k½ �*
j,�1 jX k½ �

j,�1 �ℳVN X k½ �
j,�1,Φ

k½ �
� �

, ð35Þ

and Y k½ �
j jX k½ �

j� �N X k½ �
j�β

k½ �,σ k½ �2
� �

, ð36Þ

for j in 1,…,n k½ � and k¼ 1,…,K.
As a prior for Φ, the inverse-Wishart distribution

with covariance matrix 2ζ2� I Q½ � and 2ζ1 degrees of free-
dom is a multivariate generalization of the prior we con-
sidered in Section 2.2 for ϕk�. Consider:

Φ k½ � � Inv-Wishart 2ζ2� I Q½ �,2ζ1
� �

; ζ1 �Exp δð Þ
and : ζ2 �Exp δð Þ, ð37Þ

for k¼ 1,…,K; where ζ1 > Q=2ð Þ and ζ2 > 0. Indeed, if
Q¼ 1, we have that, a priori, E Φ k½ �� �¼ 2ζ2= 2ζ1�Q�1ð Þ¼
ζ2= ζ1�1ð Þ; and Var Φ k½ �� �¼ ζ22= ζ1�1ð Þ2 ζ1�2ð Þ� �

.

3.3 | Example: The NELS88 dataset

We return to the NELS88 dataset example and con-
sider Q¼ 2 covariates. Let X1 be the reading test score
and X2 be the mathematics test score. In order to illus-
trate the impact of measurement error, we will create
the NELS88* dataset by adding non-differential mea-
surement error as described in Equation (33) so as to
corrupt both the reading test scores and the mathemat-
ics test score for 8 out of the K ¼ 13 schools. As such,
as in Section 2.2.2, we have k0 ¼ 5. We define Φ k½ � to be a
diagonal matrix such that the measurement error in X1 is
independent of the measurement error in X2. For
k¼ 6,…,13, we set Φ k½ �

1,1 equal to between 4 and 6; and set
Φ k½ �

2,2 equal to between 8 and 12. Table A4(A) lists regres-
sion coefficients obtained before and after adding the
measurement error and also lists the set values for Φ k½ �

1,1

and Φ k½ �
2,2 for reference.

For this simple example analysis, we specify multivar-
iate normal priors for μ k½ � and θ: μ k½ � �ℳVN 0 Q½ �,

�
,100� I Q½ �Þ, for k¼ 1,…,K; and θ�ℳVN 0 Qþ1½ �,100�

�
I Qþ1½ �Þ; where 0 Q½ � is a Q-length vector of zeros, and
I Q½ � is a Q�Q identity matrix. Also, we will assume
that the regression coefficients are a priori independent
and specify half-Cauchy priors for σ k½ � and the Qþ1
diagonal elements of T: σ k½ � �half-Cauchy 0,2ð Þ, for
k¼ 1,…,K; and

ffiffiffiffiffiffiffi
Tqq

p �half-Cauchy 0,2ð Þ, for q in
1,…,Qþ1. Finally, for Λ k½ � and Φ, we specify inverse-
Wishart priors such that: Λ k½ � � Inv-Wishart I Q½ �,Q

� �
, for

k¼ 1,…,K; and Φ k½ � �half-Cauchy 2ζ2� I Q½ �,2ζ1
� �

; ζ1 �
Exp 0:1ð Þ, and ζ2 �Exp 0:1ð Þ.

Table A4(B) lists parameter estimates obtained from
the multivariate BMEMA model. The measurement
error introduced to the data biases the estimate of θ2
towards 0. With the unbiased data, and k0 ¼ 13, we
obtain θ̂2 ¼ 0:34 (see Table A4(B), line 2). In contrast,
with the biased data, NELS88*, we obtain θ̂2 ¼ 0:25
(see Table A4(B), line 1). The BMEMA model obtains a
an estimate of θ̂2 ¼ 0:35 (see Table A4(B), line 3, and
MCMC diagnostic plots in Figure A3 in the Appendix).
When k0 ¼ 0, the MCMC mixing is problematic; this is
clear in the MCMC diagnostic plots; see Figure A4 in
the Appendix. The challenging sampling is no doubt
due to the identifiability issues discussed in
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Section 2.2.1 and to the fact that different combina-
tions of Φ k½ �, θ k½ � and T k½ � can yield similar model proba-
bilities. Unless custom samplers are configured, inference
from the BMEMA model with k0 ¼ 0 may not be possible.
This should not be so surprising: computation with “par-
tially identified” models can be a “bottleneck issue” (see
sect. 7.1 of Gustafson47).

4 | CONCLUSION

A meta-analysis based on all available evidence, even if
some evidence is less than perfect, may be preferable to
a meta-analysis that ignores large swathes of data.48,49

However, one should always correct for sources of bias
if this is possible. Currently, tools to correct for mea-
surement error in a meta-analysis are not available and
as a consequence, researchers are left to simply list mea-
surement error as a study limitation (e.g., Wu et al.50:
“this study has several limitations […] none of the stud-
ies corrected for measurement error” and Merino
et al.51: “although every effort was made to maximize
the validity of the study, minimize bias, and incorporate
heterogeneity and uncertainty, the estimated hazard
ratios of dietary components could be affected by mea-
surement error”).

In the simplest univariate scenario, if the exposure of
interest in a study is compromised due to non-differential
measurement error, one must inflate its point estimates
and down-weight the study's overall contribution to the
meta-analysis. The proposed Bayesian model, the
BMEMA model, provides a systematic and efficient way
to do just this for continuous outcome data. If one sus-
pects that certain studies are compromised by measurement
error, one can incorporate this uncertainty regarding the
bias into the hierarchical Bayesian framework and obtain
appropriate point and interval estimates. Moreover, as we
demonstrated with the NELS88 analysis example, incorpo-
rating these biased studies can be beneficial: credible inter-
vals were narrower when data from all studies were
included for meta-analysis relative to when only the unbi-
ased studies were included. This is relevant in real-world
settings where meta-analyses pool evidence from varied
sources. For example, in epidemiology, observational stud-
ies are frequently combined with randomized control trials
(RCTs) in systematic reviews and meta-analyses; see Bun
et al.52 While certain studies may be biased, they may still
provide value if one can appropriately account and adjust
for the bias. Bayesian inference is well suited to the task.

We also showed that, if IPD are available, a Bayesian
meta-analysis model can easily adjust for multiple
participant-level covariates that are measured with or
without measurement error.53 While issues of identifiability

may make a Bayesian model difficult to fit for more com-
plex multivariable data, so long as a subset of studies is
known to be unbiased, these studies can “anchor” the
uncertainty allowing for straightforward Bayesian inference.
That being said, the proposed BMEMA model requires one
to make several important assumptions. We stress that the
BMEMAmodel will assume that all differences between the
unbiased studies and the biased studies are due to measure-
ment error when in reality there may be other systematic
differences at play. Furthermore, the model, as it is cur-
rently described, can only deal with non-differential mea-
surement. In practice, there may be substantial bias due to
differential measurement error.54 Differential measurement
error is a major concern, for instance, in retrospective stud-
ies; see White.55 Future research should investigate how to
address these difficult issues. In addition, future research
should generalize the proposed BMEMA model for binary
and time-to-event outcomes and could also extend the
model to network meta-analysis.

On a final note, beyond the bias caused by measure-
ment error, a meta-analysis of observational studies
should, ideally, also take into account other (potentially
bigger) biases, for example, publication bias and bias due
to unmeasured confounding.56,57 The solutions we put for-
ward may be more broadly applicable and it would seem
desirable, and feasible, to consider all sources of uncer-
tainty and bias within a single comprehensive Bayesian
model. Future work should investigate whether the Bayes-
ian hierarchical framework proposed and the “heterogene-
ity of bias” principle can be used to derive appropriate
estimates in a meta-analysis where individual studies are
subject to varying degrees—and varying types—of bias.
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APPENDIX A.

Consider the evaluation of (26) for τ>0, that is, where a
limited heterogeneity in the β k½ � parameters is permitted.
Figure 2 (lower panel) shows how the global identifica-
tion interval is wider when τ¼ 0:50 relative to when τ¼ 0
for the “fixed-effects” case. This interval outlined by the
green rectangle can be easily obtained via quadratic
programming.

Recall that quadratic programming constitutes the
minimization of a quadratic function subject to linear
constraints, and these may be a mix of equality and
inequality constraints. Let x be a candidate value,
which we will test for membership in the identification
interval. To perform this test, we use a standard quadratic
programming package (e.g., quadprog58) to minimize the
quadratic function Var β k½ �� �

, subject to the equality con-
straint θ¼ x and the inequality constraints which restrict
β k½ � to the interval Ik for each k. The x value belongs in
the identification interval if and only if the minimized
variance does not exceed τ2. Thus a simple grid search
over values of x numerically determines the identification
interval. Two numerical searches can be undertaken.
One starts at the underlying value and tests successively
larger x until a failing value is obtained. The other starts
at the underlying value and does the same, but moving
downwards.
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TABLE A1 The NELS88 data—Aggregate data required for the univariate and bivariate meta-analyses in Section 2.1.1, as obtained

from the NELS88 dataset

Sample size data required for univariate model data required for bivariate model

k n k½ � β̂
k½ �

se β̂
k½ �� �

α̂ k½ � se α̂ k½ �
� �

β̂
k½ �

se β̂
k½ �� �

σ̂ k½ �2

1 45 0.64 0.10 4.99 1.53 0.64 0.10 12.28

2 64 0.42 0.09 7.91 1.16 0.42 0.09 19.50

3 47 0.51 0.16 8.46 2.71 0.51 0.16 11.48

4 45 0.49 0.09 2.95 1.19 0.49 0.09 15.71

5 45 0.67 0.10 1.75 1.07 0.67 0.10 15.15

6 59 0.54 0.09 5.53 1.24 0.54 0.09 19.45

7 56 0.56 0.12 5.48 1.77 0.56 0.12 17.31

8 45 0.39 0.16 9.69 2.78 0.39 0.16 13.51

9 51 0.61 0.12 6.60 2.15 0.61 0.12 6.93

10 67 0.67 0.11 6.33 1.84 0.67 0.11 13.88

11 48 0.57 0.10 4.03 1.23 0.57 0.10 11.62

12 45 0.62 0.13 6.39 1.85 0.62 0.13 20.55

13 47 0.50 0.13 4.02 1.85 0.50 0.13 15.16

Note: The NELS88 aggregate data.

TABLE A2 The NELS88* data—Aggregate data obtained from the NELS88* dataset required for the BMEMA univariate and bivariate

models in Section 2.2.2

Sample
size

Measurement
error

Attenuation
factor

data required
for
univariate
model

data
required for
bivariate
model

k n k½ � ϕ k½ � γ k½ � β̂
k½ �*

se β̂
k½ �*� �

α̂ k½ �* se α̂ k½ �*
� �

β̂
k½ �*

se β̂
k½ �*� �

σ̂ k½ �2*

1 45 0.00 1.00 0.64 0.10 4.99 1.53 0.64 0.10 12.28

2 64 0.00 1.00 0.42 0.09 7.91 1.16 0.42 0.09 19.50

3 47 0.00 1.00 0.51 0.16 8.46 2.71 0.51 0.16 11.48

4 45 0.00 1.00 0.49 0.09 2.95 1.19 0.49 0.09 15.71

5 45 0.00 1.00 0.67 0.10 1.75 1.07 0.67 0.10 15.15

6 59 1.00 0.98 0.55 0.09 5.39 1.25 0.55 0.09 19.32

7 56 2.57 0.78 0.41 0.10 7.75 1.56 0.41 0.10 19.03

8 45 4.14 0.41 0.18 0.12 13.12 2.14 0.18 0.12 14.56

9 51 5.71 0.23 0.16 0.06 14.63 1.23 0.16 0.06 9.45

10 67 7.29 0.26 0.14 0.07 15.16 1.24 0.14 0.07 20.80

11 48 8.86 0.25 0.15 0.06 8.96 0.95 0.15 0.06 18.12

12 45 10.43 0.21 0.12 0.08 13.24 1.29 0.12 0.08 30.29

13 47 12.00 0.12 0.00 0.04 10.87 0.89 0.00 0.04 20.35

Note: The NELS88* aggregate data. Values of ϕ k½ � which correspond to the amount of measurement error intentionally added to each study and values of the
attenuation factor, γ k½ �, are also listed for reference.
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TABLE A3 The data analysis

results obtained—posterior medians

with 95% equal-tailed credible intervals

Dataset Model K k0 θ CI θð Þ95% τ

line 1. NELS88* Univariate 13 13 0.33 0.19, 0.48 0.23

Bivariate 13 13 0.34 0.21, 0.48 0.21

line 2. NELS88 Univariate 13 13 0.56 0.49, 0.62 0.04

Bivariate 13 13 0.57 0.51, 0.64 0.04

line 3. NELS88* Univariate 13 5 0.52 0.38, 0.65 0.10

Bivariate (δ¼ 0:1) 13 5 0.56 0.43, 0.69 0.07

Bivariate (δ¼ 0:5) 13 5 0.54 0.40, 0.65 0.07

line 4. NELS881:5 Univariate 5 5 0.54 0.38, 0.72 0.09

Bivariate 5 5 0.55 0.41, 0.72 0.08

line 5. NELS88* Univariate 13 0 0.69 0.46, 1.04 0.16

Bivariate (δ¼ 0:1) 13 0 0.94 0.67, 1.22 0.08

Bivariate (δ¼ 0:5) 13 0 0.74 0.48, 1.04 0.08

line 6. NELS88 Univariate 13 5 0.63 0.54, 0.77 0.09

Bivariate (δ¼ 0:1) 13 5 0.58 0.51, 0.66 0.04

Bivariate (δ¼ 0:5) 13 5 0.58 0.51, 0.66 0.04

line 7. NELS88 Univariate 13 0 0.81 0.65, 1.17 0.08

Bivariate (δ¼ 0:1) 13 0 0.60 0.52, 0.78 0.05

Bivariate (δ¼ 0:5) 13 0 0.60 0.52, 0.79 0.05

Note: R-code to replicate table: https://tinyurl.com/2ayeyeem.
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FIGURE A1 Diagnostic plots for parameters θ and ξ, for the MCMC simulation of the univariate BMEMA model with k0 ¼ 5 and δ¼ 0:1

(this corresponds to the results in Table A3, line 3). The left panels report trace plots from the posterior to check convergence. The right

panels report the corresponding posterior distribution estimate (black solid line) together with the prior distribution for that parameter (red

solid line). The % overlap reported in red is the PPO (prior-posterior overlap) [Colour figure can be viewed at wileyonlinelibrary.com]

16 CAMPBELL ET AL.

http://wileyonlinelibrary.com


FIGURE A2 Diagnostic plots for parameters ζ1 and ζ2, for the MCMC simulation of the univariate BMEMA model with k0 ¼ 5 and δ¼
0:1 (this corresponds to the results in Table A3, line 3). The left panels report trace plots from the posterior to check convergence. The right

panels report the corresponding posterior distribution estimate (black solid line) together with the prior distribution for that parameter (red

solid line). The % overlap reported in red is the PPO (prior-posterior overlap) [Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE A4 (A) Aggregate data obtained from the NELS88 dataset and the NELS88* dataset for comparison and (B) The data analysis

results obtained—posterior medians with 95% equal-tailed credible intervals

(A) NELS88* data

k n k½ � β̂
k½ �
1 β̂

k½ �*
1 β̂

k½ �
2 β̂

k½ �*
2 β̂

k½ �
3 β̂

k½ �*
3

ffiffiffiffiffiffiffiffiffi
Φ k½ �

1,1

q ffiffiffiffiffiffiffiffiffi
Φ k½ �

2,2

q
1 45 4.38 4.38 0.39 0.39 0.18 0.18 0.00 0.00

2 64 5.47 5.47 0.26 0.26 0.22 0.22 0.00 0.00

3 47 4.31 4.31 0.28 0.28 0.26 0.26 0.00 0.00

4 45 2.35 2.35 0.20 0.20 0.18 0.18 0.00 0.00

5 45 0.23 0.23 0.34 0.34 0.28 0.28 0.00 0.00

6 59 3.59 6.70 0.27 0.19 0.25 0.14 6.00 12.00

7 56 2.29 4.53 0.31 0.31 0.29 0.20 6.00 8.00

8 45 3.60 15.94 0.26 0.04 0.25 �0.01 6.00 10.00

9 51 2.16 14.20 0.50 0.18 0.19 0.01 5.00 10.00

10 67 5.62 8.32 0.64 0.30 0.04 0.14 6.00 8.00

11 48 3.62 5.87 0.41 0.25 0.13 0.08 5.00 10.00

12 45 3.14 7.62 0.38 0.34 0.25 0.11 5.00 12.00

13 47 3.78 6.37 0.15 0.06 0.25 0.19 5.00 8.00

(B) Analysis results with BMEMA, Q¼ 2

Dataset K , k0 θ1 CI θ1ð Þ θ2 CI θ2ð Þ θ3 CI θ3ð Þ ffiffiffiffiffiffiffi
T22

p ffiffiffiffiffiffiffi
T33

p

Line 1. NELS88* 13, 13 6.17 4.49, 7.99 0.25 0.19, 0.32 0.15 0.11, 0.20 0.05 0.06

Line 2. NELS88 13, 13 3.14 2.11, 4.26 0.34 0.26, 0.42 0.22 0.18, 0.27 0.07 0.02

Line 3. NELS88* 13, 5 2.41 0.86, 4.04 0.35 0.23, 0.48 0.25 0.18, 0.32 0.07 0.04

Line 4. NELS881:5 5, 5 3.01 1.03, 5.35 0.30 0.13, 0.46 0.23 0.14, 0.33 0.08 0.05

Line 5. NELS88* 13, 0 – –, – – –, – – –, – – –

Line 6. NELS88 13, 5 2.28 1.12, 3.47 0.36 0.25, 0.48 0.24 0.18, 0.31 0.07 0.03

Line 7. NELS88 13, 0 – –, – – –, – – –, – – –

Note: (A) Values for Φ k½ �
1,1 and Φ k½ �

2,2 which correspond to the amount of measurement error intentionally added to the reading test score and the mathematics test
score, respectively, for the k-th study are also listed for reference. (B) R-code to replicate the table: https://tinyurl.com/y5w9jxg7.
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FIGURE A3 Diagnostic plots for the θ parameter, for the MCMC simulation of the multivariate BMEMA model with k0 ¼ 5 (this

corresponds to the results in Table A4B, line 3). The left panels report trace plots from the posterior to check convergence. The right panels

report the corresponding posterior distribution estimate (black solid line) together with the prior distribution for that parameter (red solid

line). The % overlap reported in red is the PPO (prior-posterior overlap) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE A4 Diagnostic plots for the θ parameter, for the MCMC simulation of the multivariate BMEMA model with k0 ¼ 0 (this

corresponds to the results in Table A4B, line 5). The left panels report trace plots from the posterior to check convergence. The right panels

report the corresponding posterior distribution estimate (black solid line) together with the prior distribution for that parameter (red solid

line). The % overlap reported in red is the PPO (prior-posterior overlap) [Colour figure can be viewed at wileyonlinelibrary.com]
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