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Determining a lack of association between an outcome variable and a number of different

explanatory variables is frequently necessary in order to disregard a proposedmodel (i.e.,

to confirm the lack of a meaningful association between an outcome and predictors).

Despite this, the literature rarely offers information about, or technical recommenda-

tions concerning, the appropriate statistical methodology to be used to accomplish this

task. This paper introduces non-inferiority tests for ANOVA and linear regression

analyses, which correspond to the standard widely used F test for ĝ2 and R2, respectively.

A simulation study is conducted to examine the Type I error rates and statistical power of

the tests, and a comparison is made with an alternative Bayesian testing approach. The

results indicate that the proposed non-inferiority test is a potentially useful tool for

‘testing the null’.

1. Introduction

All too often, researchers will conclude that the effect of an explanatory variable,X, on an

outcome variable, Y, is absent when a null-hypothesis significance test (NHST) yields a

non-significant p-value (e.g., when the p-value exceeds .05). Unfortunately, such an

argument is logically flawed. As the saying goes, ‘absence of evidence is not evidence of

absence’ (Altman & Bland, 1995; Hartung, Cottrell, & Giffin, 1983). Indeed, a non-

significant result can simply be due to insufficient power, andwhile an NHST can provide

evidence to reject the null hypothesis, it cannot provide evidence in favour of the null

(Quertemont, 2011).
Let h be the parameter of interest representing the true association betweenX andY in

the population of interest. The equivalence/non-inferiority test reverses the question that

is asked in an NHST. Instead of asking whether we can reject the null hypothesis (e.g.,

H0 : h ¼ 0), an equivalence test examineswhether themagnitude of h is at all meaningful:

canwe reject an association betweenX andY as large or larger than our smallest effect

size of interest, D? The null hypothesis for an equivalence test is therefore defined as

H0 : jhj �D; or for theone-sidednon-inferiority test, the null hypothesis isH0 : h�D. Note
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that researchers must decide which effect size is considered meaningful or relevant

(Lakens, Scheel, & Isager, 2018), and define D accordingly, before observing any data; see

Campbell and Gustafson (2018b) for details.

In a standard multi-variable linear regression model, or a standard analysis of variance
(ANOVA), the variability of the outcome variable, Y, is attributed to multiple different

explanatory variables, X1;X2; . . .;Xp. Researchers will typically report the linear

regression model’s R
2 statistic, or the ĝ2 in the ANOVA context, to estimate the

proportion of variance in the observed data that is explained by the model. To determine

whether or not we can reject the hypothesis that the variance attributed to the

explanatory variables is equal to zero, one typically calculates an F statistic and tests

whether the ‘null model’ (i.e., the intercept-only model) can be rejected in favour of the

‘full model’ (i.e., the model with all explanatory variables included). However, in this
multivariate setting, while rejecting the ‘null model’ is rather simple, concluding in

favour of the ‘null model’ is less obvious.

If the explanatory variables are not statistically significant, can we simply disregard

the full model? We certainly should not pick and choose which variables to include in

the model based on their significance (it is well known that, due to model selection

bias, most stepwise variable selection schemes are to be avoided; see Hurvich and Tsai

(1990)). How can we formally test whether the proportion of variance attributable to

the full set of explanatory variables is too small to be considered meaningful? In this
paper we introduce a non-inferiority test to reject effect sizes that are as large as or

larger than the smallest effect size of interest as estimated by either the R
2 statistic or

the ĝ2 statistic.

In Section 2 we introduce a non-inferiority test for the coefficient of determination

parameter in a linear regression context.We showhow todefinehypotheses and calculate

a valid p-value for this test based on the R2 statistic. We then consider how this frequentist

test compares to a Bayesian testing scheme based on Bayes factors (BFs), and conduct a

small simulation study to better understand the test’s operating characteristics. In
Section 3we illustrate the use of this test with data from a recent study about the absence

of the Hawthorne effect. In Section 4we present the analogous non-inferiority test for the

g2 parameter in an ANOVA.We also provide a modified version of this test that allows for

the possibility that the variance across groups is unequal.

2. A non-inferiority test for the coefficient of determination parameter

The coefficient of determination, commonly known as R2, is a sample statistic used in

almost all fields of research. In a linear regressionmodel, theR2 is equal to the square of the

Pearson correlation coefficient between the observed and predicted outcomes (Nagelk-

erke, 1991; Zou, Tuncali, & Silverman, 2003). Despite the R2 statistic’s ubiquitous use, its

corresponding population parameter, which wewill denote as P2, as in Cramer (1987), is

rarely discussed. When considered, it is sometimes known as the ‘parent multiple

correlation coefficient’ (Barten, 1962) or the ‘population proportion of variance
accounted for’ (Kelley, 2007). See Cramer (1987) for a technical discussion.

While confidence intervals for P
2 have been studied by many researchers (e.g.,

Dudgeon, 2017; Ohtani, 2000; Ohtani & Tanizaki, 2004), there has been no consideration

(as far as we know) of a non-inferiority test for P2. In this section wewill derive such a test

and investigate how it compares to a popular Bayesian alternative (Rouder & Morey,

2012).
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Before we continue, let us define some notation. All technical details are presented in

the Appendix. LetN be the number of observations in the observed data;K be the number

of explanatory variables in the linear regressionmodel; yi be the observed value of random

variable Y for the ith subject; xji be the observed value of fixed covariate Xj for the ith
subject, for k in 1; . . .;K ; and X be the N by Kþ 1 covariate matrix (with a column of

1s for the intercept; we use the notation Xi;� to refer to all Kþ 1 values corresponding to

the ith subject). We operate under the standard linear regression assumption that

observations in the data are independent and normally distributed with:

Yi �Normal XT
i;�b;r

2
� �

; 8i ¼ 1; . . .;N ; ð1Þ

whereb is a parameter vector of regression coefficients, andr2 is the population variance.

The parameterP2 represents the proportion of total variance in the population that can be

accounted for by knowing the covariates, that is, by knowing X. As such, P2 is entirely
dependent on the particular design matrix X, and we have that.

P2 ¼ rT
XYR

�1
X rXY

r2
Y

; ð2Þ

where r2
Y is the unconditional variance of Y (note that r2

Y �r2); rXY is the vector of

population covariances between the K different X variables and Y; and RX is the

population covariance matrix of the K different X variables. The R2 statistic estimates the

parameter P2 from the observed data. See Kelley (2007) for a complete derivation of

equation (2).
A standardNHST askswhetherwe can reject the null hypothesis thatP2 is equal to zero

(H0 : P
2 ¼ 0). The p-value for this NHST is calculated as.

p-value ¼ 1� pf F ;K ;N� K� 1; 0ð Þ; ð3Þ

where pf �;df1;df2;ncpð Þ is the cumulative distribution function (cdf) of the non-central F

distribution with degrees of freedom df1 and df2, and non-centrality parameter ncp (note

that ncp ¼ 0 corresponds to the central F distribution); and where

F ¼ R2=K

ð1� R2Þ=ðN� K� 1Þ : ð4Þ

One can calculate the above p-value in R with the following code:

pval = pf(Fstat, df1 = K, df2 = N-K-1, lower.tail = FALSE).

A non-inferiority test for P2 is asking a different question: can we reject the hypothesis

that the total proportion of variance in Y attributable toX is greater than or equal toD?
Formally, the hypotheses for the non-inferiority test are.

H0 : 1[P2 �D; H1 : 0�P2\D:

The p-value for this non-inferiority test is obtained by inverting the one-sided

confidence interval for P2 (see Appendix for details), and can be calculated as.
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p-value ¼ pf F ;K ;N� K� 1;
ND
1� D

� �
: ð5Þ

Note that one can calculate the above p-value in R with the following code:

pval = pf(Fstat, df1=K, df2=N-K-1, ncp=(N*Delta)/(1-Delta),
lower.tail=TRUE).

Under the assumption that the true value of P2 ¼ 0, for given values of N, K, and D, a
simple analytic formula provides a reasonable approximation of the non-inferiority test’s

statistical power:

power ¼ Prðreject H0jP2 ¼ 0Þ ¼ pf F�;K ;N� K� 1; 0ð Þ; ð6Þ

where F� is equal to the 100ð1� aÞ% critical value of a non-central F distribution with

degrees of freedom df1 ¼ K and df2 ¼ N� K� 1, and non-centrality parameter
ncp ¼ ND= 1� Dð Þ. Note that one can calculate the above power estimate in R with

the following code:

Fstatstar = qf(alpha, df1=K, df2=N-K-1, ncp=(N*Delta)/(1-Delta),
lower.tail=TRUE)

power = pf(Fstatstar,df1=K,df2 = N-K-1,lower.tail=TRUE).

It is important to remember that the above tests make two important assumptions

about the data:

� The data are independent and normally distributed as described in equation (1).
� The values for X in the observed data are fixed and their distribution in the sample is

equal (or representative) to their distribution in population of interest. The sampling

distribution of R2 can be quite different when regressor variables are random; see

Gatsonis and Sampson (1989).

Ideally, a researcher uses the non-inferiority test to examine a pre-registered

hypothesis concerning the absence of a meaningful effect. However, in practice, one

might first conduct an NHST (i.e., calculate a p-value, p1, using equation (3)) and only

proceed to conduct the non-inferiority test (i.e., calculate a second p-value, p2, using
equation (5)) if the NHST fails to reject the null. Such a two-stage sequential testing

scheme has recently been put forward by Campbell and Gustafson (2018a) under the

name of ‘conditional equivalence testing’ (CET). Under the proposed CET scheme, if the

first p-value, p1, is less than the Type I error threshold a (e.g., if p1\:05), one concludes
with a ‘positive’ finding: P2 is significantly greater than 0. On the other hand, if the first p-

value, p1, is greater than a and the second p-value, p2, is smaller than a (e.g., if p1 � :05 and
p2\:05), one concludes with a ‘negative’ finding: there is evidence of a statistically

significant non-inferiority, that is, P2 is at most negligible. If both p-values are large, the
result is inconclusive: there are insufficient data to support either finding.

In this paper we are not advocating for (or against) CET but simply use it to facilitate a

comparison with BF testing (which also categorizes outcomes as either positive, negative

or inconclusive). Other possible testing strategies available to researchers include:

performing only an equivalence test; performing both an equivalence test and an NHST

(acknowledging the possibility there is a non-zero, but trivial, effect); and performing an
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NHST if and only if the equivalence test is not significant. As long as these procedures are

chosen andperformed transparently (e.g., in a pre-registered study) there are scenarios for

which all these options can be defended.

2.1. Comparison to a Bayesian alternative

For linear regressionmodels, based on thework of Liang, Paulo, Molina, Clyde, and Berger

(2008) andRouder andMorey (2012) propose using BFs to determinewhether the data, as

summarized by theR2 statistic, support the null or the alternativemodel. This is a common

approach used in psychology studies (see, most recently, H€attenschwiler et al., 2019).

Here we refer to the null model (‘model 0’) and alternative (full) model (‘model 1’) as:

model 0 : Yi �Normal b0;r
2

� �
; 8i ¼ 1; . . .;N ; ð7Þ

model 1 : Yi �Normal XT
i;�b;r

2
� �

; 8i ¼ 1; . . .;N ; ð8Þ

where b0 is the overall mean of Y (i.e., the intercept).

We define the Bayes factor, BF10, as the probability of the data under the alternative

model relative to the probability of the data under the null:

BF10 ¼ Prðdatajmodel 1Þ
Prðdatajmodel 0Þ ; ð9Þ

with the ‘10’ subscript indicating that the full model (i.e., model 1) is being compared
to the null model (i.e., model 0). The BF can be easily interpreted. For example, a BF10
equal to 0.10 indicates that the null model is 10 times more likely than the full model.

Bayesian methods require one to define appropriate prior distributions for all model

parameters. Rouder andMorey (2012) suggest using ‘objective priors’ for linear regression

models and explain in detail how one may implement this approach. We will not discuss

the issue of prior specification in detail, and instead point interested readers to Consonni

and Veronese (2008) who provide an in-depth overview of how to specify prior

distributions for linear models.
Using the BayesFactor package in R (Morey, Rouder, Jamil, & Morey, 2015) with the

function linearReg.R2stat( ), one can easily obtain a BF corresponding to given

values for R2, N and K. (Alternatively, see also the baymedr package in R [Linde & van

Ravenzwaaij, 2019]). Since we can also calculate frequentist p-values corresponding to

given values forR2,N andK (see equations 3 and 5), a comparisonbetween the frequentist

and Bayesian approaches is relatively straightforward.

For three different values of K(=1, 5, 12) and a broad range of values of N (76 values

from 30 to 1,000), we calculated the R2 values corresponding to a BF10 of 1/3 (‘moderate
evidence’ in favour of the null model [Jeffreys, 1961]) and of 3 (‘moderate evidence’ in

favour of the fullmodel).We thenproceeded to calculate the corresponding frequentist p-

values for NHST and non-inferiority testing for the (R2, K, N) combinations. Note that all

priors required for calculating the BF were set by simply selecting the default settings of

the linearReg.R2stat( ) function (with rscale = ‘medium’), whereby a non-

informative Jeffreys prior is placed on the variance of the normal population, while a

scaled Cauchy prior is placed on the standardized effect size; see Morey et al. (2015).
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The results are plotted in Figure 1. The left-hand columnplots the conclusions reached

by frequentist testing (i.e., the CET sequential testing scheme). For all calculations, we

defined a ¼ :05 andD ¼ :10. The right-hand column plots the conclusions reached based

on the BF with a threshold of 3.
Each conclusion corresponds to a different colour in the plot: green indicates a

positive finding (evidence in favour of the full model); red indicates a negative finding

(evidence in favour of the null model); and yellow indicates an inconclusive finding

(insufficient evidence to support either model). Note that we have also included a fourth

colour, light green. For the frequentist testing scheme, light green indicates a scenario

where both theNHST p-value and the non-inferiority testp-value are less than a ¼ :05. The
tests reveal that the observed effect size is both statistically significant (i.e., we reject

H0 : P
2 ¼ 0) and statistically smaller than the effect size of interest (i.e., we also reject

H0 : P
2 �D). In these situations, one could conclude that, while P2 is significantly greater

than zero, it is likely to be practically insignificant (i.e., a real effect of a negligible

magnitude).

Figure 1. Colours indicate the conclusions corresponding to varying levels of R
2 and N

(red = negative; yellow = inconclusive; green = positive). Left-hand panels show the frequentist

testing scheme with NHST and non-inferiority test (D ¼ :10); right-hand panels show the Bayesian

testing scheme with a threshold for the BF of 3. The significance threshold for frequentist tests is

a ¼ :05. Both the vertical axis (R2) and horizontal axis (N) are on logarithmic scales. Note that the

light green colour corresponds to scenarios for which both the NHST and the non-inferiority p-

values are less than a ¼ :05. One could describe the effect in these cases as ‘significant yet not

meaningful’.
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Three observations merit comment. First, when testing with BFs, there will always

exist a combination of values ofR2 andN that corresponds to an inconclusive result. This is

not the case for frequentist testing: the probability of obtaining an inconclusive finding

will decrease with increasing N, and at a certain point will be zero. For example, with
K ¼ 5 and anyN [ 184, it is impossible to obtain an inconclusive finding regardless of the

observed R
2.

Second, for K ¼ 1 covariate, with N\30, it is practically impossible to obtain a

negative conclusion with the Bayesian approach, and only possible with the frequentist

approach (for the equivalence bound of D ¼ :10) if the R2 is very, very small (less than

approximately 0:001).
Third, for K ¼ 12 covariates, with N\50, the frequentist testing scheme obtains a

negative conclusion in situations when R2 [D. This may seem rather odd but can be
explained by the fact thatR2 is ‘seriously biased upward in small samples’ (Cramer, 1987).

Based on this comparison of BFs and frequentist tests, we can speculate that, given the

same data, both approaches will often provide one with the same overall conclusion. In

Section 2.3 we investigate this further by means of a simulation study.

2.2. Simulation study 1

We conducted a simple simulation study in order to better understand the operating
characteristics of the non-inferiority test and to confirm that the test has correct Type I

error rates. We simulated data for each of 24 scenarios, one for each combination of the

following parameters:

� one of four sample sizes, N ¼ 60, N ¼ 180, N ¼ 540 or N ¼ 1; 000;
� oneof twodesignswithK ¼ 2orK ¼ 4binary covariates (with anorthogonal, balanced

design), and with b ¼ 0:0; 0:2; 0:3ð Þ or b ¼ 0:0; 0:2; 0:2;�0:1;�0:2ð Þ; and
� one of three variances, r2 ¼ 0:4, r2 ¼ 0:5 or r2 ¼ 1:0.

Depending on the particular values of K and r2, the true coefficient of determination

for these data is either P2 ¼ :031, P2 ¼ :061 or P2 ¼ :075. Parameters for the simulation

study were chosen so that we would consider a wide range of values for the sample size

(representative of those sample sizes commonly used in the psychology literature; see

K€uhberger et al. (2014), Fraley and Vazire (2014), and Marszalek, Barber, Kohlhart, and
Cooper (2011)) and so as to obtain three unique values for P

2 approximately evenly

spaced between 0 and .10.

We also simulated data from eight additional scenarios where P2 ¼ 0. This allows us to

confirm that the proposed function (equation 6) for estimating power is accurate. These

additional scenarios were based on the following parameters:

� one of four sample sizes, N ¼ 60, N ¼ 180, N ¼ 540 or N ¼ 1; 000;
� one of two designs with K ¼ 2 or K ¼ 4 binary covariates, with b ¼ 0:0; 0:0; 0:0ð Þ or

b ¼ 0:0; 0:0; 0:0; 0:0; 0:0ð Þ; and
� r2 ¼ 1:0.

For each of the 32 configurations, we simulated 50,000 unique data sets and calculated

a non-inferiority p-valuewith each of 19 different values ofD (ranging from .01 to .10).We

then calculated theproportion of thesep-values less thana ¼ :05.We specifically chose to
conduct 50,000 simulation runs so as to keep computing time within a reasonable limit

while also reducing the amount of Monte Carlo standard error to a negligible amount (for
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looking at Type I error with a ¼ :05, Monte Carlo standard error will be approximately

0:001 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05ð1� 0:05Þ=50; 000p

); see Morris, White, and Crowther (2019).

Figure 2 plots the results with a restricted vertical axis to better show the Type I error

rates. Figure 3 plots the results against the unrestricted vertical axis. Both plots also show
dotted black curves which correspond to the numbers obtained using equation (6) for

calculating power.

We see thatwhen the equivalence boundD equals the true effect size (i.e., .031, .061or

.075), the Type I error rate is exactly .05, as it should be, for allN. This situation represents

the boundary of the null hypothesis (i.e.,H0 : D�P2). As the equivalence bound increases

beyond the true effect size (i.e., D[P2), the alternative hypothesis is then true and it

becomes possible to correctly conclude equivalence.

As expected, the power of the test increases with larger values ofD, larger values ofN,
and smaller values of K. Also, in order for the test to have substantial power, P2 must be

substantially smaller than D. The agreement between the red curves (P2 ¼ 0) and the
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Figure 2. Simulation study results. The upper panel shows results forK ¼ 2; the lower panel shows

results for K ¼ 4. Both plots are presented with a restricted vertical axis to better show the Type I

error rates. The solid horizontal black line indicates the desired Type I error of a ¼ :05. The dotted

black curves plot numbers calculated using equation (6) for estimating power. For each of 32

configurations, we simulated 50,000 unique data sets and calculated a non-inferiority p-value with

each of 19 different values of D (ranging from .01 to .10).
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dotted black curves suggests that the analytic function presented in equation (6) provides

a fairly accurate approximation of the statistical power.

2.3. Simulation study 2

We conducted a second simulation study to compare the operating characteristics of

testingwith the Jeffreys–Zellner–Siow (JZS) BF relative to testingwith the frequentist CET

approach. (Note that the frequentist and Bayesian testing schemes we consider are but

two ofmany options available to researchers. For example, one could consider a Bayesian

approach that uses an interval-based null; see Kruschke and Liddell (2018).

In this simulation study, frequentist conclusions were based on setting D equal to .01,

.05 or .10; and with a ¼ :05. JZS BF conclusions were based on an evidence threshold of
either 3, 6 or 10. A threshold of 3 can be considered ‘moderate evidence’, a threshold of 6

can be considered ‘strong evidence’, and a threshold of 10 can be considered ‘very strong

evidence’ (Jeffreys, 1961; Wagenmakers, Wetzels, Borsboom, & Van Der Maas, 2011).
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Figure 3. Simulation study, complete results. The upper panel shows results for K ¼ 2; the lower

panel shows results for K ¼ 4. The solid horizontal black line indicates the desired Type I error of

a ¼ :05. The dotted black curves plot numbers calculated using equation (6) for estimating power.

For each of 32 configurations, we simulated 50,000 unique data sets and calculated a non-inferiority

p-value with each of 19 different values of D (ranging from .01 to .10).
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Note that for the simulation study herewe examine only the ‘fixed-n design’ for BF testing;

see Sch€onbrodt & Wagenmakers (2018) for details. Also note that, as in Section 2.1, all

priors required for calculating the BF were set by simply selecting the default settings of

the linearReg.R2stat( ) function (with rscale = ‘medium’), whereby a non-
informative Jeffreys prior is placed on the variance of the normal population, while a

scaled Cauchy prior is placed on the standardized effect size; see Morey et al. (2015).

We simulated data sets for 64 unique scenarios. We considered the following

parameters:

� one of 16 sample sizes, N = 20, N = 30, N = 42, N = 60, N = 88, N = 126, N = 182,

N = 264,N = 380,N = 550,N = 794,N = 1, 148,N = 1, 658,N = 2, 396,N = 3, 460,

or N = 5,000;

� one of two designswithK = 4 binary covariates (with an orthogonal, balanced design),

with either b ¼ 0:0; 0:2; 0:2;�0:1;�0:2ð Þ or b ¼ 0:0; 0:0; 0:0; 0:0; 0:0ð Þ;
� one of three variances, r2 ¼ 9:0;r2 ¼ 1:0 or r2 ¼ 0:5.

Note that for the b ¼ 0:0; 0:0; 0:0; 0:0; 0:0ð Þ design, we only consider one value for

r2 ¼ 1:0. Depending on the particular design and r2, the true coefficient of determina-
tion for these data is either P2 ¼ :000, P2 ¼ :004, P2 ¼ :031 or P2 ¼ :061.

For each simulated data set,weobtained frequentistp-values, JZS BFs, and declared the

result to be positive, negative or inconclusive accordingly. Results are presented in

Figures 4–6 and are based on 5,000 distinct simulated data sets per scenario. We are also

interested in how often the two approaches will reach the same overall conclusion:

averaging over all 64 scenarios, how often on average will the Bayesian and

frequentist approaches reach the same conclusion given the samedata?Table 1 displays

the average rate of agreement between the Bayesian and frequentist methods.
Three observations merit comment. First, with an evidence threshold of 3 or of 6, the

JZS BF requires substantially less data to reach a negative conclusion than the frequentist

scheme in most cases. However, with an evidence threshold of 10 and D ¼ :10, both
methods are approximately equally likely to deliver a negative conclusion. Note that the

probability of reaching a negative result with CETwill never exceed .95 since the NHST is

performed first and will reach a positive result with probability 1� a; see the dashed

orange lines in panels 1–3 of Figures 4–6.

Second, while the JZS BF requires less data to reach a conclusive result when the
sample size is small (see how the solid black curve drops more rapidly than the dashed

grey line), there are scenarios in which larger sample sizes will surprisingly reduce the

likelihood of the BF obtaining a conclusive result (see how the solid black curve drops

abruptly then rises slightly as n increases for P2 = .004 and .031; for example, panels 4 and

7 of Figure 6).

Third, the JZS BF is always less likely to deliver a positive conclusion (see how the

dashed blue curve is always higher than the solid blue curve). In scenarios like the oneswe

considered, the JZS BF may require larger sample sizes to reach a positive conclusion and
thus may be considered less powerful in a traditional frequentist sense.

Based on our comparison of BFs and frequentist tests, we can confirm that, given the

same data, both approaches will often provide one with the same overall conclusion. The

level of agreement, however, is highly sensitive to the choice ofD and the choice of the BF

evidence threshold; see Table 1. The highest level of agreement, recorded at .80, is when

D ¼ :10 and the BF evidence threshold is equal to 10. In contrast, when D ¼ 0:01 and the
BF evidence threshold is 3, the two approaches will only deliver the same conclusion half
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of the time. Table 2 shows that the two approaches rarely arrive at entirely contradictory

conclusions. In less than 6% of cases did we observe one approach arrive at a positive

conclusion while the other approach arrived at a negative conclusion when faced with

exactly the same data.

The results of this second simulation study suggest that, depending on how they are

configured, the JZS BF and CETmay operate very similarly. Think of the JZS BF and CET as

two pragmatically similar, yet philosophically different, tools for making trichotomous
significance-testing decisions. This simulation study result is reassuring since it suggests

that the conclusions obtained from frequentist and Bayesian testing will rarely lead to

substantial disagreements.

3. Practical example: Evidence for the absence of a Hawthorne effect

McCambridge, Wilson, Attia, Weaver, and Kypri (2019) tested the hypothesis that

participants who know that the behavioural focus of a study is alcohol-relatedwill modify
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Figure 4. Simulation study 2, complete results for BF threshold of 3. Probability of obtaining each

conclusion by Bayesian testing scheme (JZS BF with fixed sample size design, BF threshold of 3:1)

and CET (a ¼ :05). Each panel displays the results of simulations for different values of D and P2.

Note that all solid lines and the dashed blue line do not change for different values of D.
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their consumption of alcohol while under study. The phenomenon of subjects modifying

their behaviour simply because they are being observed is commonly known as the

Hawthorne effect (Wickstr€om & Bendix, 2000).

The researchers conducted a three-arm individually randomized trial online among
students in four NewZealand universities. The three groupswere: group A (control), who

were told theywere completing a lifestyle survey; group B,whowere told the focus of the

survey was alcohol consumption; and group C, who additionally answered 20 questions

on their alcohol use and its consequences before answering the same lifestyle questions as

groups A and B. The pre-specified primary outcome was a subject’s self-reported volume

of alcohol consumption in the previous 4 weeks (in units of standard drinks). This

measure was recorded at baseline and after 1 month at follow-up. See Table 3 for a

summary of the data from McCambridge et al. (2019).
The data were analysed by McCambridge et al. (2019) using a linear regression model

with repeated measures fit by generalized estimating equations (GEE) and an ‘indepen-

dence’ correlation structure. For an NHST of the overall experimental group effect, the
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Figure 5. Simulation study 2, complete results for BF threshold of 6. Probability of obtaining each

conclusion by Bayesian testing scheme (JZS BF with fixed sample size design, BF threshold of 6:1)

and CET (a ¼ :05). Each panel displays the results of simulations for different values of D and P2.

Note that all solid lines and the dashed blue line do not change for different values of D.
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researchers obtained a p-value of .66. Based on this result, McCambridge et al. (2019)

conclude that ‘the groups were not found to change differently over time’.

We note that this linear regression model fit by GEE is just one of many potential

models one could use to analyse this data set; see Yang and Tsiatis (2001). Three (among
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Figure 6. Simulation study 2, complete results for BF threshold of 10. Probability of obtaining each

conclusion by Bayesian testing scheme (JZS BF with fixed sample size design, BF threshold of 10:1)

and CET (a ¼ :05). Each panel displays the results of simulations for different values of D and P
2.

Note that all solid lines and the dashed blue line do not change for different values of D.

Table 1. Averaging over all 96 scenarios and over all 5,000 Monte Carlo simulations per scenario,

how often on average did the Bayesian and frequentist approaches reach the same conclusion?

Numbers in this table represent the average proportion of simulated data sets (averaged over

64 9 5,000 = 320,000 unique data sets) for which the Bayesian and frequentist methods arrive at

the same conclusion

BF thres. = 3 BF thres. = 6 BF thres. = 10

D = .10 .719 .767 .800

D = .05 .628 .683 .735

D = .01 .485 .538 .594
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many) other reasonable alternative approaches are: a linear model using only the follow-
up responses (without adjustment for thebaselinemeasurement); a linearmodel using the

follow-up responses as outcome with a covariate adjustment for the baseline measure-

ment; and a linear model using the difference between follow-up and baseline responses

as outcome. These three approaches yield p-values of .45, .56, and .61, respectively. None

of these p-values suggests rejecting the null hypothesis. In order to show evidence in

favour of the null, we turn to our proposed non-inferiority test.

We fit the data (N = 4,580) with a linear regression model using the difference

between follow-up and baseline responses as the outcome, and the groupmembership as
a categorical covariate,K = 2.We then consider the non-inferiority test for the coefficient

of determination parameter (see Section 2), with D ¼ 0:01. This test asks the following

question: does the overall experimental group effect account for less than 1% of the

variability explained in the outcome?

Table 2. Averaging over all 96 scenarios and over all 5,000 Monte Carlo simulations per scenario,

how often on average did the Bayesian and frequentist approaches strongly disagree in their

conclusion? Numbers in this table represent the average proportion of simulated data sets (averaged

over 64 9 5,000 = 320,000 unique data sets) for which the Bayesian and frequentist methods

arrived at completely opposite (one positive and one negative) conclusions

BF thres. = 3 BF thres. = 6 BF thres. = 10

D = .10 .055 .042 .034

D = .05 .055 .042 .034

D = .01 .056 .042 .035

Table 3. Summary of the data from McCambridge et al. (2011). The table summarizes the pre-

specified primary outcome, a subject’s self-reported volume of alcohol consumption in the previous

4 weeks (in units of standard drinks). This measure was recorded at baseline and after 1 month at

follow-up in each of the three experimental groups

Baseline Follow-up Difference

A

N 1,795 1,483 1,483

Mean 24.60 18.39 �5.13

SD 31.80 23.32 24.56

B

N 1,852 1,532 1,532

Mean 23.83 17.48 �5.64

SD 31.79 23.81 21.77

C

N 1,825 1,565 1,565

Mean 23.03 17.45 �4.79

SD 30.65 23.21 25.17

Total

N 5,472 4,582 4,580

Mean 23.82 17.77 �5.19

SD 31.42 23.44 23.88
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The choice ofD ¼ 0:01 represents our belief that anyHawthorne effect explaining less

than 1%of the variability in the datawould be considered negligible. For reference, Cohen

(1988) describes an R
2 of .0196 as ‘a modest enough amount, just barely escaping

triviality’; and more recently, Fritz, Morris, and Richler (2012) consider associations
explaining ‘1% of the variability’ as ‘trivial’. It is up to researchers to provide a justification

of the equivalence bound before they collect the data. Researchers can specify the non-

inferiority margin based on theoretical predictions (e.g., derived from a computational

model), based on a cost–benefit analysis, or based on discussions among experts who

decide which effects are too small to be considered meaningful.

We obtain R2 ¼ :000216 and can calculate the F statistic with equation (4):

F ¼ R2=K

1� R2ð Þ= N� K� 1ð Þ

¼ 0:000216=2

1� 0:000216ð Þ= 4; 580� 2� 1ð Þ

¼ 0:000108

0:000218

¼ 0:49:

To obtain a p-value for the non-inferiority test, we use equation (5):

p-value ¼ pf F ;K ;N� K� 1;
ND

ð1� DÞ
� �

¼ pf 0:49; 2; 4; 580� 2� 1;
4; 580 � 0:01
ð1� 0:01Þ

� �
¼ 1:13
 10�9:

This result suggests that we can confidently reject the null hypothesis that P2 [ :01.
We therefore conclude that the data are most compatible with no important effect. For

comparison, the Bayesian testing scheme we considered in Section 2.1 obtains a Bayes

factor of B10 ¼ 0:00284 ¼ 1=352. The R code for these calculations is presented in the

Appendix.

4. A non-inferiority test for the ANOVA g2 parameter

Despite being entirely equivalent to linear regression (Gelman 2005), the fixed effects (or

between-subjects) ANOVA continues to be themost common statistical procedure to test

the equality of multiple independent population means in many (Plonsky & Oswald,

2017). The non-inferiority test considered earlier in the linear regression contextwill now

be described in an ANOVA context for evaluating the equivalence of multiple
independent groups. We must emphasize that the two versions are essentially the same

test described with different names. Note that all tests developed and discussed in this

paper are only for between-subject ANOVA designs and cannot be applied to within-

subject designs. Extensions to within and mixed designs are a fruitful effort for future

research.

Equivalence/non-inferiority tests for comparing groupmeans in an ANOVA have been

proposed before. For example, Rusticus and Lovato (2011) list several examples of studies

that used ANOVA to compare multiple groups in which non-significant findings are
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incorrectly used to conclude that groups are comparable. The authors emphasize the

problem (‘a statistically non-significant finding only indicates that there is not enough

evidence to support that two (or more) groups are statistically different’) and offer an

equivalence testing solution based on confidence intervals. Unfortunately, conclusions of
equivalence are based only on confidence intervals which the authors warn may be ‘too

wide’ (Rusticus & Lovato, 2011).

In another proposal, Wellek (2010) considered simultaneous equivalence testing for

several parameters to test group means. However, this strategy may not necessarily be

more efficient than the rather inefficient strategy of multiple pairwise comparisons; see

the conclusions of Pallmann and Jaki (2017). Koh and Cribbie (2013) (see also Cribbie,

Arpin-Cribbie, & Gruman, 2009) consider two different omnibus tests. These are

presented as non-inferiority tests for u2, a parameter closely related to the population
signal-to-noise parameter, s2n (note that s2n ¼ u2=N , where N is the total sample size).

Unfortunately, the use of these tests is limited by the fact that the population parameters

u2 and s2n are not commonly used in analyses since their units of measurement are rather

arbitrary.

In this section we consider a non-inferiority test for the population effect-size

parameter, g2, a standardized effect size that is commonly used in the social sciences

(Kelley, 2007). The parameter g2 represents the proportion of total variance in the

population that can be accounted for by knowing the group level. The use of commonly
employed standardized effect sizes is recommended in order to facilitate future meta-

analysis and the interpretation of results (Lakens, 2013). Note that g2 is analogous to the

P2 parameter considered earlier in the linear regression context in Section 2. Also note

that the non-inferiority test we propose is entirely equivalent to the test for u2 proposed

by Koh and Cribbie (2013). It is simply a reformulation of the test in terms of the g2

parameter.

Before going forward, let us define some basic notation. All technical details are

presented in the Appendix. Let Y represent the continuous (normally distributed)
outcome variable, and X represent a fixed categorical variable (i.e., group membership).

LetN be the total number of observations in the observed data, J be the number of groups

(i.e., factor levels inX), andnjbe the number of observations in the jth group, for j in 1, . . .,
J. We will consider two separate cases, one in which the variance within each group is

equal, and one in which variance is heterogeneous.

Typically, one will conduct a standard F test to determine whether one can reject the

null hypothesis that g2 is equal to zero (H0 : g2 ¼ 0). The p-value is calculated as:

p-value ¼ 1� pf F ; J� 1;N� J ; 0ð Þ; ð10Þ

where, as in Section 2, pf �;df1;df2;ncpð Þ is the cdf of the non-central F distribution with
degrees of freedom df1 and df2, and non-centrality parameter ncp (note that ncp = 0

corresponds to the central F distribution); and where.

F ¼
PJ

j¼1 njðyj � yÞ2=ðJ� 1ÞPJ
j¼1

Pnj

i¼1 ðyij � yjÞ2=ðN� JÞ : ð11Þ

One can calculate the above p-value using R with the following code:

pval = pf(Fstat,df1 = J-1,df2 = N-J,lower.tail = FALSE).
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A non-inferiority test forg2 asks a different question: canwe reject the hypothesis that

the total amount of variance in Y attributable to groupmembership is greater than D?
Formally, the hypotheses for the non-inferiority test are written as:

H0 : 1[g2 �D; H1 : 0\g2 �D:

Ifwe rejectH0,we reject the hypothesis that there aremeaningful differences between

the group means (lj, j ¼ 1; . . .; J), in favour of the hypothesis that the group means are

consideredpractically equivalent. Thep-value for this test is obtained by inverting the one-

sided confidence interval for g2 (see Appendix for details) and can be calculated as.

p-value ¼ pf F ; J� 1;N� J ;
ND
1� D

� �
: ð12Þ

Note that one can calculate the above p-value using R with the following code:

pval = pf(Fstat,df1 = J-1,df2 = N-J,ncp = N*Delta/(1-Delta),
lower.tail = TRUE).

Under the assumption that the true value of g2 ¼ 0, for given values of N, J and D, a
simple analytic formulaprovides an estimate for the non-inferiority test’s statistical power:

power ¼ PrðrejectH0jg2 ¼ 0Þ ¼ pf F�; J� 1;N� J ; 0ð Þ; ð13Þ

where F� is equal to the 100 1� að Þ% critical value of a non-central F distribution with
degrees of freedom df1 ¼ J� 1 and df2 ¼ N� J , and non-centrality parameter

ncp ¼ ND= 1� Dð Þ. Note that one can calculate the above power estimate in R with

the following code:

Fstatstar = qf(alpha, df1 = J-1, df2 = N-J, ncp = (N*Delta)/
(1-Delta), lower.tail = TRUE) power = pf(Fstatstar,
df1 = J-1, df2 = N-J, lower.tail = TRUE).

The non-inferiority test forg2 makes the following three important assumptions about

the data:

� The outcome data are independent and normally distributed.

� The proportions of observations for each group (i.e., nj=N , for j ¼ 1; . . .; JÞ that are in
the observed data are equal to the proportions that are in the total population of

interest.
� The variance within each group is equal (homogeneous variance).

4.1. A non-inferiority test for ANOVA with heterogeneous variance

With regard to the third assumption above,we canmodify the above non-inferiority test in

order to allow for the possibility that the variance is unequal across groups (heteroge-

neous variance). Welch’s F-test statistic is calculated (see Appendix for details; see also

Delacre, Lakens, Mora, and Leys (2018)).
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F 0 ¼
PJ

j ŵjðyj � yÞ2= J� 1ð Þ
1þ 2 J�2ð Þ

J2�1

PJ
j¼1 ððnj � 1Þ�1Þ 1� ŵj

Ŵ

� � ; ð14Þ

where ŵj ¼ nj=s
2
j , with s2j ¼

Pnj

i¼1 ððyij � yjÞ2Þ=ðnj � 1Þ, for j ¼ 1; . . .; J ; and where

Ŵ ¼ PJ
j¼1 ŵj, and y0 ¼ PJ

j¼1 ŵjyj

� �
=Ŵ , for j ¼ 1; . . .; J .

Then the p-value for a non-inferiority test (H0 : 1[ g2 �D) in the case of heteroge-

neous variance is:

p-value ¼ pf F 0; J� 1;df 0;
ND
1� D

� �
; ð15Þ

where

df 0 ¼ J2 � 1

3
PJ

j¼1ð nj � 1Þ�1
� �ð1� ŵj=Ŵ Þ2 : ð16Þ

The above p-value can be calculated using R with the following code:

aov1 <- oneway.test(y ~ x, var.equal = FALSE)
Fprime <- aov1$statistic
dfprime <- aov1$parameter[2]
pval = pf(Fprime, J-1, df2 = dfprime, ncp = (Delta*N)/(1-Delta),
lower.tail = TRUE)

For the heterogeneous case the population effect-size parameter, g2, is defined

slightly differently than for the homogeneous case (see Appendix for details). Based

on the simulation studies of Koh and Cribbie (2013), we can recommend that the

non-inferiority test based on the Welch’s F 0 statistic (i.e., the test with p-value

calculated from equation (15)) is almost always preferable (with regard to statistical

power and Type I error rate) to the test which requires an assumption of

homogeneous variance (i.e., the test with p-value calculated from equation (12)).
This agrees with similar recommendations for using Welch’s t test (e.g., Delacre,

Lakens, & Leys, 2017; Ruxton, 2006). We also point interested readers to the related

work of Jan and Shieh (2019).

Some might advocate for a two-step procedure, using the homoscedastic version as a

default and only moving to the Welch version as needed based on a preliminary test for

homogeneity of variance. However, problems with this kind of preliminary testing (e.g.,

first testing for equality of variances, then deciding upon which test to use) have been

identified (e.g., Campbell & Dean, 2014; Zimmerman, 2004a,2004b), and as such, the use
of the two-step procedure cannot be recommended.

4.2. The absence of a Hawthorne effect (ANOVA)

For the absence of a Hawthorne effect example we considered earlier in Section 3, note

that we can easily analyse the data in an ANOVA framework (and obtain the identical

result). The standard ANOVA output is summarized in Table 4.

In this case, with D ¼ 0:01, a non-inferiority test can be conducted for g2

(H0 : 1[g2 �D) and a p-value is calculated using equation (12) as follows:
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p-value ¼ pf F ; J� 1;N� J ;
ND
1� D

� �

¼ pf 0:49; 3� 1; 4580� 3;
4; 580 � 0:01
1� 0:01

� �
¼ 1:13
 10�9:

5. Conclusion

In this paper we have presented a statistical method for non-inferiority testing of

standardized omnibus effects commonly used in linear regression and ANOVA. We have
also considered how frequentist non-inferiority testing, and equivalence testing more

generally, offer an attractive alternative to Bayesian methods for ‘testing the null’. We

recommend that all researchers specify an appropriate non-inferiority margin and, at a

minimum, plan to use the proposed non-inferiority tests in the event that a standardNHST

fails to reject the null. In cases where the sample size is very large, the non-inferiority test

can be useful to detect effects that are statistically significant but not meaningful.

Wewish to emphasize that the use of equivalence/non-inferiority tests should not rule

out the complementary use of confidence intervals. Indeed, confidence intervals can be
extremely useful for highlighting the stability (or lack of stability) of a given estimator,

whether that be the R2, ĝ2 or any other statistic. Perhaps one advantage of equivalence/

non-inferiority testing over confidence intervals may be that testing can improve the

interpretation of null results (Hauck & Anderson, 1986; Parkhurst, 2001). By clearly

distinguishing between what is a negative as opposed to an inconclusive result,

equivalence testing serves to simplify the long ‘series of searching questions’ necessary to

evaluate a ‘failed outcome’ (Pocock&Stone, 2016). In our opinion, the best interpretation

of data will be when using both tools together, and our proposal simply serves to ‘extend
the arsenal of confirmatory methods rooted in the frequentist paradigm of inference’

(Wellek, 2017).

Note that our current non-inferiority test for P2 in a standard multi-variable linear

regression is limited to comparing the full model to the null model. As such, the test is not

suitable for comparing two nested models. For example, we cannot use the test to

compare a smaller model (with only the baseline measure as a covariate) with a larger

model that includes both baseline measure and group membership as covariates.

Equivalence testing for comparing two nested models will be addressed in future work in
which we will consider a non-inferiority test for the increase in R

2 between a smaller

model and a larger model. Related work includes that of Algina, Keselman, and Penfield

(2007), Algina, Keselman, and Penfield (2008). We also wish to further investigate non-

inferiority testing for ANOVA with within-subject designs, following the work of Rose,

Mathew, Coss, Lohr, andOmland (2018). It would also be interesting (andworthwhile) to

Table 4. ANOVA summary of the absence of a Hawthorne effect example data

df Sum Sq Mean Sq F value

Experimental Group 2 562.77 281.38 0.49

Residuals 4,577 2,609,820.50 570.20

ĝ2 = .000216
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develop non-inferiority tests to tackle the R
2 calculated for generalized linear mixed-

effects models (Nakagawa & Schielzeth, 2013).

There is a great risk of bias in the scientific literature if researchers only rely on

statistical tools that can reject null hypotheses, but do not have access to statistical tools
that allow them to reject the presence of meaningful effects. Most recently, Amrhein,

Greenland, and McShane (2019) express great concern with the practice of statistically

non-significant results being ‘interpreted as indicating “no difference” or “no effect”’

(Amrhein et al., 2019); see also Altman and Bland (1995). Equivalence tests provide one

approach to improve current research practices by allowing researchers to falsify their

predictions concerning the presence of an effect.

By specifying equivalence bounds, researchers can design studies that yield informa-

tive answers bothwhen the alternative hypothesis is true, andwhen the null hypothesis is
true. Using equivalence tests to reject the presence ofmeaningful effectsmakes it possible

to conclude that predictions are falsified, and thus might be a way to mitigate problems

that are caused by publication bias. However, equivalence tests can also be abused.

Researchers might be tempted to specify the equivalence bounds after looking at the data

such that the equivalence test is guaranteed to be statistically significant. Ideally,

equivalence bounds are pre-specified and documented in a pre-registration document

that ismade availablewhen amanuscript is submitted for publication to avoid flexibility in

the data analysis. Equivalence bounds should always be justified and independent of the
observed data. Weak justifications weaken the statistical inference. Thinking about what

would falsify your prediction is a crucial step when designing a study, and specifying a

smallest effect size of interest and performing an equivalence test provides one way to

answer that question.
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Appendix A:

A.1. Linear regression: further details and R code

The R2 statistic estimates the parameter P2 from the observed data:

R2 ¼ 1� SSres

SStot
; ðA1Þ

where SSres ¼
PN

i¼1 yi � ŷið Þ2 and SStot ¼
PN

i¼1 yi � yð Þ2, with ŷ ¼ XT X 0Xð Þ�1
X 0Y and

y ¼ PN
i¼1 yi=N .

The R code for analysis of the McCambridge et al., (2019) data is as follows:

Xmatrix <- model.matrix(totaldrinking.diff ~ group,
data = side_data)

lmmodel <- lm(totaldrinking.diff ~ group, data = side_data)

R2 <- summary(lmmodel)$r.squared
Fstat <- summary(lmmodel)$fstatistic[1]
K <- dim(Xmatrix) [2] – 1
N <- dim(Xmatrix) [1]
Delta <- 0.01

pf(Fstat,df1 = K,df2 = N-K-1,ncp=(N*Delta)/(1-Delta),
lower.tail = TRUE)

linearReg.R2stat(N = N, p = K, R2 = R2, simple = TRUE)

The code below replicates the results published in [McCambridge et al., 2019]. Note

that there appears to be a typo in the published table whereby the p-values .89 and .86 are

switched.

Hdata$group<-relevel(Hdata$group,"A")

mod0 <- geeglm(totaldrinking ~ + group + t,
id = participant_ID, corstr="independence", data = Hdata,
x = TRUE)

mod1 <- geeglm(totaldrinking ~ group*t + group+t,
id = participant_ID, corstr="independence", data = Hdata)
(anova(mod1,mod0))
summary(mod1)$coefficients

Hdata$group<-relevel(Hdata$group,"C")
mod1a <- geeglm(totaldrinking ~ group*t + group+t,
id = participant_ID, corstr="independence", data = Hdata)
summary(mod1a)

A.2. ANOVA with homogeneous variance: further details

The true population group mean for group j is denoted lj, for j in 1,. . .,J; and we denote

the group effects as sj ¼ lj � l, where l is the overall weighted population mean,

l ¼ PJ
j¼1 ljnj

� �
=N . These parameters are estimated from the observed data by the

corresponding sample group means, l̂j ¼ yj ¼
Pnj

i¼1 yi
� �

=nj, for j in 1,. . .,J; and the

overall sample mean, l̂ ¼ y ¼ PJ
j¼1 yjnj

� �
=N .
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We operate under the assumption that the data are normally distributed such that

Yi;j �Normal lj; r
2
w

� �
; 8j ¼ 1; . . .; J ; 8i ¼ 1; . . .;nj; ðA2Þ

where r2
w denotes the variance within groups. We also define the variance between

groups as r2b ¼ PJ
j¼1 ðnjðlj � lÞÞ2=N . Finally, the total population variance is defined as

r2
t ¼ r2

b þ r2
w. The corresponding sums of squares are estimated from the data:

SSb ¼ PJ
j¼1 njðyj � yÞ2, SSw ¼ PJ

j¼1

Pnj

i¼1 ðyij � yjÞ
2
and SSt ¼ SSb þ SSw.

Recall that the ANOVA F-test statistic is calculated as

F ¼ SSb=dfb
SSw=dfw

¼
PJ

j¼1 njðyj � yÞ2= J� 1ð ÞPJ
j¼1

Pnj

i¼1ðyij � yjÞ2= N� Jð Þ ; ðA3Þ

where dfb ¼ J� 1 and dfw ¼ N� J . The F statistic follows an F distribution with degrees

of freedom dfb for the numerator and dfw degrees of freedom for the denominator.
The population effect size, g2 2 0; 1½ �, is a parameter that represents the amount of

variance in the outcome variable, Y, that is explained by the group membership, (i.e.,

knowing the level of the factor X), and is defined as

g2 ¼ r2b
r2t

¼ r2b
r2b þ r2w

¼ 1� r2w
r2t

: ðA4Þ

Wecan estimate the population parameterg2 from the observed data using the sample

statistic, ĝ2, as follows: ĝ2 ¼ SSb=SSt . It is well known that ĝ2 is a biased estimate for g2.

However, alternative estimates (including ê2 ¼ SSb � dfb �MSwð Þ=SSt and
x̂2 ¼ SSb � dfb �MSwð Þ= SSt þMSwð Þ) are also biased; see [Okada, 2013] for more details

(note that there is a typo in equation 5 of [Okada, 2013]).

The population effect-size parameter g2 is closely related to the signal-to-noise-ratio

parameter, s2n ¼ r2
b=r

2
w, and to the non-centrality parameter, K ¼ PJ

j¼1 njs2j
=r2

w ¼ Nr2
b=r

2
w. Consider the equality

g2 ¼ s2n

1� s2n
¼ K

Kþ N
: ðA5Þ

The non-centrality parameter, K, is estimated from the data as K̂ ¼ n� 1ð ÞSSb=SSw,
and we can easily calculate a one-sided 100 1� að Þ% confidence interval, 0;KU½ �, by
‘pivoting’ the cdf; see [Kelley, 2007, Section 2.2] and references therein. This requires

solving (numerically) the following equation for KU :

pf F ;df1 ¼ dfb;df2 ¼ dfw;ncp ¼ KUð Þ ¼ a; ðA6Þ

where pf �;df1;df2;ncpð Þ is the cdf of the non-central F distribution with degrees of
freedom df1 and df2, and non-centrality parameter ncp. The values for F, dfb, dfw, are

calculated from the data as defined above. The solution,KU , will be the upper confidence

bound of K such that PrðK\KU Þ ¼ a.
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As detailed in Kelley (2007) (note that there is a typo in eq. 55 Kelley (2007):KL in the

numerator should be KU ), one can convert the bounds of the confidence interval for K
into bounds for a confidence interval for g2. The upper limit of a one-sided confidence

interval for g2 is g2
U ¼ KU= KU þ Nð Þ. As such, we have that

Pr g2 �KU= KU þ Nð Þð Þ ¼ 1� a.

A.3. ANOVA with heterogeneous variance: further details

As above, the true population groupmean for group j is denoted by lj, for j in 1, . . ., J. We

now define

Yi;j �Normal lj;r
2
w;j

� �
; 8j ¼ 1; . . .; J ; 8i ¼ 1; . . .;nj; ðA7Þ

together with wj ¼ nj=r2
w;j, W ¼ PJ

j¼1 wj and l0 ¼ PJ
j¼1 wjlj

� �
=W .

Recall that a Welch F-test statistic is calculated as

F
0 ¼

PJ
j
bwjð�y j

� �
y

0 Þ2=ðJ� 1Þ
1þ 2ðJ�2Þ

J2�1

PJ
j¼1ððnj � 1Þ�1Þð1� bwj= bW Þ2

; ðA8Þ

where ŵj ¼ nj=s
2
j , with s2j ¼

Pnj

i¼1 ððyij � yjÞ2Þ=ðnj � 1Þ, for j ¼ 1; . . .; J ; and where

Ŵ ¼ PJ
j¼1 ŵj and y0 ¼ PJ

j¼1 ŵjyj

� �
=Ŵ , for j ¼ 1; . . .; J .

Levy (1978) proposed an approximate non-null distribution for the F 0 statistic such

that F 0 follows a non-central F distribution with degrees of freedom df1 ¼ J� 1 and

df2 ¼ df 0, and non-centrality parameter K0 ¼ PJ
j¼1 wjðlj � l0Þ2; see also [Jan & Shieh,

2014]. The degrees of freedom for this case are defined as: df1 ¼ J� 1 and

df 0 ¼ J2 � 1

3
PJ

j¼1ð nj � 1Þ�1� �ð1� ŵj=Ŵ Þ2 ðA9Þ

We will therefore define our population effect-size parameter for the heterogeneous

case as

g2
0 ¼ K

0

K
0 þ N

: ðA10Þ

Note that in the case of homogeneous variance (i.e., when r2w;j ¼ r2w;k, for all j; k in

1; . . .; J), we have K0 ¼ K and g2
0 ¼ g2. The p-value for the non-inferiority test

(H0 : g2
0
[D) in the case of heterogeneous variance is

p-value ¼ pf F 0; J� 1;df 0;ncp ¼ ND
1� D

� �
: ðA11Þ
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