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Abstract
In response to growing concern about the reliability and reproducibility of published science, researchers
have proposed adopting measures of “greater statistical stringency,” including suggestions to require larger
sample sizes and to lower the highly criticized “p < 0.05” significance threshold. While pros and cons are
vigorously debated, there has been little to no modeling of how adopting these measures might affect
what type of science is published. In this article, we develop a novel optimality model that, given current
incentives to publish, predicts a researcher’s most rational use of resources in terms of the number of studies
to undertake, the statistical power to devote to each study, and the desirable prestudy odds to pursue. We
then develop a methodology that allows one to estimate the reliability of published research by considering
a distribution of preferred research strategies. Using this approach, we investigate the merits of adopting
measures of “greater statistical stringency” with the goal of informing the ongoing debate.

ARTICLE HISTORY
Received March 2018
Revised November 2018

KEYWORDS
Meta-research; Null
hypothesis significance
Testing; Publication;
Reliability; Reproducibility;
Statistical power

1. Introduction

It is to be remarked that the theory here given rests on
the supposition that the object of the investigation is the
ascertainment of truth. When an investigation is made for
the purpose of attaining personal distinction, the economics
of the problem are entirely different. But that seems to be
well enough understood by those engaged in that sort of
investigation.

Note on the Theory of the Economy of Research,
Charles Sanders Peirce, 1879

In a highly cited essay, Ioannidis (2005) uses the Bayes theo-
rem to claim that more than half of published research findings
are false. While not all agree with the extent of this conclusion
(e.g., Goodman and Greenland 2007; Leek and Jager 2017),
recent large-scale efforts to reproduce published results in a
number of different fields (economics, Camerer et al. 2016;
psychology, OpenScienceCollaboration 2015; oncology, Begley
and Ellis 2012), have also raised concerns about the reliability
and reproducibility of published science. Unreliable research not
only reduces the credibility of science, but is also very costly
(Freedman, Cockburn, and Simcoe 2015) and as such, address-
ing the underlying issues is of “vital importance” (Spiegelhal-
ter 2017). Many researchers have recently proposed adopting
measures of “greater statistical stringency,” including sugges-
tions to require larger sample sizes and to lower the highly
criticized “p < 0.05” significance threshold. In statistical terms,
this represents selecting lower levels for acceptable Type I and
Type II error rates. The main argument against “greater sta-
tistical stringency” is that these changes would increase the
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costs of a study and ultimately reduce the number of studies
conducted.

Consider the debate about lowering the significance thresh-
old in response to the work of Johnson (2013), who, based on
the correspondence between uniformly most powerful Bayesian
tests and classical significance tests, recommends lowering sig-
nificance thresholds by a factor of 10 (e.g., from p < 0.05 to
p < 0.005). Gaudart et al. (2014), voicing a common objection,
contend that such a reduction in the allowable Type I error
rate will result in inevitable increases to the Type II error rate.
While larger sample sizes could compensate, this can be costly:
“increasing the size of clinical trials will reduce their feasibility
and increase their duration” (Gaudart et al. 2014). In the view
of Johnson (2014), this may not necessarily be such a bad thing,
pointing to the excess of false positives (FPs) and the idea that
(in the context of clinical trials) “too many ineffective drugs are
subjected to phase III testing [...] wast[ing] enormous human
and financial resources.”

More recently, a highly publicized call by over seven dozen
authors to “redefine statistical significance” has made a similar
suggestion: lower the threshold of what is considered “signifi-
cant” for claims of new discoveries from p < 0.05 to p < 0.005
(Benjamin et al. 2018). This has prompted a familiar response
(e.g., Wei and Chen 2018). Amrhein, Korner-Nievergelt, and
Roth (2017) review the arguments for and against more strin-
gent thresholds for significance and conclude that: “[v]ery pos-
sibly, more stringent thresholds would lead to even more results
being left unpublished, enhancing publication bias. [...] [W]hile
aiming at making our published claims more reliable, request-
ing more stringent fixed thresholds would achieve quite the
opposite.”
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There is also substantial disagreement about suggestions to
require larger sample sizes. In some fields, showing that a study
has a sufficient sample size (i.e., high power) is common practice
and an expected requirement for funding and/or publication,
while in others it rarely occurs. For example, Charles et al. (2009)
found that 95% of randomized controlled trials (RCTs) report
sample size calculations. In contrast, only a tiny fraction of
articles in some fields –about 3% for psychology, and about 2%
for toxicology—justify their sample size (Bosker, Mudge, and
Munkittrick 2013; Fritz , Scherndl, and Kühberger 2013). The
number is only marginally higher in conservation biology at
approximately 8% (Fidler et al. 2006).

One argument is that, once a significant finding is achieved,
the size of a study is no longer relevant. Aycaguer and Galbán
(2013) explain as follows: “If a study finds important informa-
tion by blind luck instead of good planning, I still want to know
the results.” Another viewpoint is that, while far from ideal,
underpowered studies should be published since cumulatively,
they can contribute to useful findings (Walker 1995). Others
disagree and contend that small sample sizes undermine the reli-
ability of published science (Button et al. 2013a; Dumas-Mallet
et al. 2017; Nord et al. 2017). In the context of clinical trials,
IntHout, Ioannidis, and Borm (2016) review the many conflict-
ing opinions about whether trials with suboptimal power are
justified and conclude that, in circumstances when evidence for
efficacy can be effectively combined across a series of trials (e.g.,
via meta-analysis), small sample sizes might be justified.

Despite the long-running and ongoing debates on signifi-
cance thresholds and sample size requirements, there has been
little to no modeling of how changes to a publication policy
might affect what type of studies are pursued, the incentive
structures driving research, and ultimately, the reliability of pub-
lished science. One example is Borm, den Heijer, and Zielhuis
(2009) who conclude, based on simulation studies, that the
consequences of publication bias do not warrant the exclusion
of trials with low power. Another recent example is Higginson
and Munafò (2016), who, based on results from an optimality
model of the “scientific ecosystem,” conclude that in order to
“improve the scientific value of research” peer-reviewed publi-
cations should indeed require larger sample sizes, lower the α

significance threshold, and give “less weight to strikingly novel
findings.” Our work here aims to build upon these modeling
efforts to better inform the ongoing discussion on the repro-
ducibility of published science.

The model and methodology we present seeks to add three
features absent from the model of Higginson and Munafò
(2016). While these authors consider how researchers balance
available resources between exploratory and confirmatory
studies, this simple dichotomy does not allow for a detailed
assessment of the willingness of researchers to pursue high-
risk studies (those studies that are, a priori, unlikely to result
in a statistically significant finding). Our approach addresses
this issue by considering a continuous spectrum of a priori
risk, that is, the “pre-study probability.” Second, Higginson and
Munafò (2016) define the “total fitness of a researcher” (i.e., the
payoff for a given research strategy) with diminishing returns
for confirmatory studies, but not for exploratory studies. This
choice, however well intended, has problematic repercussions
for their optimality model. (Under their framework, the optimal

research strategy will depend on T, an arbitrary total budget
parameter.) Finally, by failing to incorporate the number of
correct studies that go unpublished within their metric for
the value of scientific research, many potential downsides of
adopting measures to increase statistical stringency are ignored.
Other differences between our approach and previous ones will
be made evident and include: considering outcomes in terms of
distributional differences, and specific modeling of how sample
size requirements are implemented.

The remainder of this article is structured as follows. In
Section 2, we describe the model and methodology proposed
to evaluate different publication policies. We also list a number
of metrics of interest and look to recent meta-research analy-
ses to calibrate our model. In Section 3, we use the proposed
methodology to evaluate the potential impact of lowering the
significance threshold; and in Section 4, the impact of requiring
larger sample sizes. Finally, in Section 5, we conclude with
suggestions as to how publication policies can be defined to best
improve the reliability of published research.

2. Methods

Recently, economic models have been rather useful for evaluat-
ing proposed research reforms (Gall, Ioannidis, and Maniadis
2017). However, modeling of how resources ought to be allo-
cated among research projects is not new. See, for example,
the work of Greenwald (1975), Dasgupta and Maskin (1987),
McLaughlin (2011), and Miller and Ulrich (2016). As noted
in the introduction, our framework for modeling the scientific
ecosystem is closest in spirit to that of Higginson and Munafò
(2016) who formulate a relationship between a researcher’s strat-
egy and their payoff, with the strategy involving a choice of mix
between exploratory and confirmatory studies, and a choice of
pursuing fewer studies with larger samples or more studies with
smaller samples.

The publication process is complex and includes both objec-
tive and subjective considerations of efficacy and relevance. The
title of this article was chosen specifically to emphasize this
point (Gornitzki, Larsson, and Fadeel 2015). A large, compli-
cated human process like that of scientific publication cannot
be entirely reduced to metrics and numbers: there are often
financial, political and even cultural reasons for an article being
accepted or rejected for publication. With this in mind, the
model presented here should not be seen as an attempt to
precisely map out the peer-review process, but rather, as a
useful tool for determining the consequences of implementing
different publication policies.

Within our optimality model, many assumptions and sim-
plifications are made. Most importantly, we assume that each
researcher must make decisions consisting of only two choices:
what statistical power (i.e., sample size) to adopt and what
“prestudy probability” to pursue. Before elaborating further, let
us briefly discuss these two concepts.

2.1. Statistical Power

Increasing statistical power by conducting studies with larger
sample sizes would undeniably result in more published
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research being true. However, these improvements may only
prove modest, given current publication guidelines. When we
consider the perspectives of both researchers and journal edi-
tors, it is not surprising that statistical power has not improved
substantially (Smaldino and McElreath 2016; Lamberink et al.
2018) despite being highlighted as an issue over five decades ago
(Cohen 1962).

In practice, multiple factors can influence sample size deter-
mination (Lenth 2001; Hazra and Gogtay 2016; Roos 2017).
Strictly in terms of publication prospects however, there is little
incentive to conduct high-powered studies: basic logic suggests
that the likelihood of publication is only minimally affected
by power. To illustrate, consider a large number of hypotheses
tested, out of which 10% are truly nonnull. Under the assump-
tion that only (and all) positive results are published with α =
0.05 (which may in fact be realistic in certain fields, Fanelli
2011), simple analytical calculation shows that increasing aver-
age power from an “unacceptably low” 55% to a “respectable”
85% (at the cost of more than doubling sample size), results
in only a minimal increase in the likelihood of publication:
from 10% to 13%. Moreover, the proportion of true findings
amongst those published is only increased modestly: from 55%
to 64%. Indeed, a main finding of Higginson and Munafò (2016)
is that the rational strategy of a researcher is to “carry out lots
of underpowered small studies to maximize their number of
publications, even though this means around half will be false
positives.” This result is in line with the views of many; see, for
example, Bakker, van Dijk, and Wicherts (2012), Button et al.
(2013b), and Gervais et al. (2015).

From a journal’s perspective, there is also little incentive to
require larger sample sizes as a requirement for publication.
There are minimal consequences from publishing false claims.
Fraley and Vazire (2014) review the publication history of six
major journals in social-personality psychology and find that
“journals that have the highest impact [factor] also tend to
publish studies that have smaller samples.” This finding is in
agreement with Szucs and Ioannidis (2016) who conclude that,
in the fields of cognitive neuroscience and psychology, journal
impact factors are negatively correlated with statistical power;
see also Brembs, Button, and Munafò (2013).

2.2. Prestudy Probability

We use the term “prestudy probability” (psp) as shorthand for
the a priori probability that a study’s null hypothesis is false. In
this sense, highly exploratory research will typically have very
low psp, whereas confirmatory studies will have a relatively high
psp. Studies with low psp are not problematic per se. To the
contrary, there are undeniable benefits to pursuing “long-shot”
novel ideas that are very unlikely to work out, see Cohen (2017).
While replication studies (i.e., studies with higher psp) may be
useful to a certain extent, there is little benefit in confirming a
result that is already widely accepted. As Button et al. (2013a)
note: “As R [the pre-study odds] increases [...] the incremental
value of further research decreases.” Most scientific journals
no doubt take this into account in deciding what to publish,
with more surprising results more likely to be published. This
state of affairs persists, despite recent calls for more replication

studies (e.g., Moonesinghe, Khoury, and Janssens 2007). Indeed,
replication studies are still often rejected on the grounds of
“lack of novelty;” see Makel, Plucker, and Hegarty (2012), Yeung
(2017), and Martin and Clarke (2017). As such, researchers
deciding which hypotheses to pursue toward publication will
likely emphasize those with lower psp.

Recognize that the lower the psp, the less likely a “statistically
significant” finding is to be true. As such, we are bound to a
“seemingly inescapable trade-off ” (Fiedler 2017) between the
novel and the reliable. Journal editors face a difficult choice.
Either publish studies that are surprising and exciting yet most
likely false, or publish reliable studies which do little to advance
our knowledge. Based on a belief that both ends of this spectrum
are equally valuable, Higginson and Munafò (2016) conclude
that, in order to increase reliability, current incentive structures
should be redesigned, “giving less weight to strikingly novel
findings.” This is in agreement with the view of Hagen (2016)
who writes: “If we are truly concerned about scientific repro-
ducibility, then we need to reexamine the current emphasis on
novelty and its role in the scientific process.”

2.3. Model Framework

We describe our model framework in five simple steps.
(1) We assume, for simplicity, that all studies test a null

hypothesis of equal population means against a two-sided alter-
native, with a standard two-sample Student t-test. Each study
has an equal number of observations per sample (n1 = n2;
n = n1 + n2). Furthermore, let us assume that a study can have
one of only two results: (1) positive (p-value < α), or (2) negative
(p-value ≥ α). Given the true effect size, μd = μ2 − μ1 (the
difference in population means), σ 2, the common population
variance, and the sample size, n, we can easily calculate the
probability of a significant result, using the standard formula for
power.1

Then, for a given true effect size of δ or zero, we have
the probability of a TP, FN, FP, and TN, equal to: Pr(TP) =
Pr(Positive|μd = δ), Pr(FN) = Pr(Negative |μd = δ),
Pr(FP) = Pr(Positive|μd = 0), and Pr(TN) = Pr(Negative|μd
= 0), respectively.

(2) Next, we consider a large number of studies, nS, each with
a total sample size of n. Of these nS studies, only a fraction, psp
(where psp is the prestudy probability), have a true effect size
of μd = δ. For the remaining (1 − psp) · nS studies, we have
μd = 0. Note that for a given sample size, n, these nS studies
are each “powered” at level pwr = Pr(TP). Throughout this
article, we focus on scenarios, where σ 2 = 1 and δ = 0.20 or

1 The probability of a positive result is equal to

Pr(Positive|μd) = (1 − Fn−2,
μd
σ∗ (t∗α/2)) + Fn−2,

μd
σ∗ (−t∗α/2), (1)

where t∗α/2 is the upper 100· α2 -th percentile of the t-distribution with

n − 2 degrees of freedom, σ∗ = σ
√

(1/n1 + 1/n2), and Fdf ,ncp(x) is
the cdf of the noncentral t distribution with df degrees of freedom and
noncentrality parameter ncp. We calculate the minimum required sample
size, n, to obtain a desired power, pwr, as follows:

n = argminn(|pwr − (1 − Fn−2,
μd
σ∗ (t∗α/2)) + Fn−2,

μd
σ∗ (−t∗α/2)|) (2)
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δ = 0.43. These choices reference the analyses of Lamberink
et al. (2018) and Richard, Bond Jr, and Stokes-Zoota (2003).
Lamberink et al. (2018), based on an empirical analysis of over
one hundred-thousand clinical trials conducted between 1975
and 2014, estimate that the median effect size of clinical trials is
approximately a Cohen’s d = 0.20. In a similar analysis based
on data from over 25,000 social/personality studies, Richard,
Bond Jr, and Stokes-Zoota (2003) estimate that the mean effect
size in social psychology research is of a Cohen’s d = 0.43.

(3) We also label each study as either published (PUB) or
unpublished (UN) for a total of 8 distinct categories (= 2 (pos-
itive, negative) × 2 (true and false) × 2 (published and unpub-
lished)). One can determine the expected number of studies (out
of a total of nS studies) in each category by simple arithmetic.
Table 1 lists the equations for each of the eight categories with A
equal to the probability of publication for a positive result, and
B equal to the probability of publication for a negative result.
Throughout this article, we will always assume that only positive
studies are published, hence, we set B = 0. Initially, we will let
the probability of publication of a positive study, A, depend on
the psp according to the function A = (1 − psp)m, where m
∈ (0, ∞) is a tuning parameter. This simple, decreasing function
of psp represents a system in which positive results with lower
psp are more likely to be published on the basis of novelty. A
higher value of m indicates that higher psp studies (i.e., low-
risk hypotheses) are less likely to be published. Consequently,
a higher value of m implies a lower overall publication rate. In
Section 4, we will define A differently, such that the probability
of publication depends on the values of both psp and pwr.

(4) We determine the total number of studies, nS, based
on three parameters: T, the total resources available (in units
of observations sampled); k, the fixed cost per study (also
expressed in equivalent units of observations sampled); and
n, the total sample size per study. Consequently, as in Higginson
and Munafò (2016), nS = (k + n)−1T. Then for any given level
of power, pwr, we can easily obtain the necessary sample size per
study, n, (using established sample size formula for two-sample
t-tests, see equations 1 and 2), and a resulting total number
of studies, nS. Keep in mind that nS, the number of studies,

Table 1. Equations for the expected number of studies (out of a total of nS studies)
for each of the eight categories; with A = prob. of publication for a positive result
and B = prob. of publication for a negative result. The number of studies nS, changes
for different values of pwr. We have that: nS = k + n(pwr)−1T , where n(pwr) is the
required sample size to obtain a power of pwr.

For a fixed resources, T ,
and a given (psp, pwr), Equation
the expected number of... (note: throughout this article, we take B = 0)

True positives (TPs)
published TPPUB(psp, pwr) = psp · nS · A · Pr(TP)

TPs unpublished TPUN(psp, pwr) = psp · nS · (1 − A) · Pr(TP)

False negatives (FNs)
published FNPUB(psp, pwr) = psp · nS · B · Pr(FN)

FNs unpublished FNUN(psp, pwr) = psp · nS · (1 − B) · Pr(FN)

FPs published FPPUB(psp, pwr) = (1 − psp) · nS · A · Pr(FP)

FPs unpublished FPUN(psp, pwr) = (1 − psp) · nS · (1 − A) · Pr(FP)

True negatives (TNs)
published TNPUB(psp, pwr) = (1 − psp) · nS · B · Pr(TN)

TNs unpublished TNUN(psp, pwr) = (1 − psp) · nS · (1 − B) · Pr(TN)

Publications ENP(psp, pwr) = TPPUB + FNPUB + FPPUB + TNPUB

is a function of pwr. Throughout this article, when necessary,
we take T=100,000. However, note that when comparing the
outcomes of different publication policies, this choice is entirely
irrelevant. Consider that when k is small, the cost of data, relative
to the total cost of a study, is large. Conversely, when k is large,
the relative cost of increasing the study sample size is small.
For example, suppose k=20 and δ = 0.20, then increasing the
power from 0.55 to 0.85, implies doubling the total cost of the
study. If instead k = 500 (all else being equal), this increase
in power corresponds to only a 50% increase in the total study
cost.

(5) Finally, let us define a “research strategy” to be a given
pair of values for (psp, pwr) within ([0,1] × [α,1]). Then, for a
given research strategy we can easily calculate the total expected
number of publications (ENP):

ENP(psp, pwr) = TPPUB + FPPUB + TNPUB + FNPUB. (3)

Figure 1 illustrates how ENP is calculated for different values of
psp and pwr, with fixed α = 0.05, k = 100, and m = 3.

With this set-up in hand, suppose now a researcher pursues
-consciously or unconsciously- strategies that maximize the
expected number of publications (Charlton and Andras 2006).
This may not be an entirely unreasonable assumption consider-
ing the influence of Goodhart’s Law (“Any observed statistical
regularity will tend to collapse once pressure is placed upon
it for control purposes”) on academia, see Fire and Guestrin
(2018) and van Dijk, Manor, and Carey (2014). Figure 2 shows
the analytical calculations of how ENP changes over a range
of values of psp and pwr and under different fixed values for
k and m. (Note how the central panel of Figure 2 (k = 100,
m = 3) corresponds to Figure 1.) Depending on k and m, the
value of (psp, pwr) that maximizes ENP can change substantially.
With larger k, higher powered strategies will yield a greater ENP;
with smaller m, optimal strategies are those with higher psp.
It is interesting to observe how the optimal strategy changes
under different scenarios. However, it may be more informative
to consider a distribution of preferred strategies. This may also
be a more realistic approach. While rational researchers may be
drawn toward optimal strategies, surely scientists are not willing
and/or able to precisely identify these.

Taking the incentive to publish as a starting point, we
assume scientists are more likely to spend resources on studies
whose psp and pwr produce a higher expected number of
publications. So we consider a distribution of resource allocation
across study characteristics whose density is proportional to
the expected number of publications, that is, fRES(psp, pwr) ∝
ENP(psp, pwr). We emphasize that from a funder’s viewpoint,
fRES() describes where dollars are being spent on the (psp, pwr)
plane. For example, consider the nine strategies illustrated
in Figure 1. Given the relative ENP values, we expect the
expenditure on (psp, pwr) = (0.2, 0.2) studies to be 18 times
greater than that on (psp, pwr) = (0.8, 0.5) studies.

In the appendix, we give expressions for two distributions
that follow on from fRES(). The first is fATM(psp, pwr) which
describes where attempted studies (not resources) fall on the
(psp, pwr) plane, presuming that resources are allocated accord-
ing to fRES(). Since higher powered studies are most costly, fRES()
and fATM() are not the same. Hence, fATM() describes what kinds
of studies are attempted more frequently.
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Figure 1. The nine-gridded squares represent nine different research strategies; from left to right, we have psp = 0.2, 0.5, and 0.8; from bottom to top, we have pwr = 0.2,
0.5, and 0.8. For each pair of values for (psp, pwr), the different colored areas represent the probabilities of a TP, a FP, a TN, and a FN. The Expected Number of Publications
(ENP) is calculated by multiplying (1) the probability of a positive finding (Pr(Positive) = psp·Pr(TP)+(1−psp)·Pr(FP)), (2) the number of studies (nS = {k+n(pwr)}−1T),
and (3) the probability of publication (A = (1 − psp)m). The figure corresponds to an ecosystem defined by α = 0.05, m = 3, k = 100, B = 0, μ = 0.20, σ 2 = 1, and
T=100,000.

Of course not all attempted studies are published. Thus, in
the appendix we also give an expression for fPUB(pwp, pwr),
the density of (psp, pwr) across published studies that is implied
when fATM() describes the characteristics of attempted studies.
Note then that each of fRES(), fATM(), and fPUB() describes rela-
tively favored and disfavored (psp, pwr) combinations. However,
the distinction between the three is important. While fRES()
describes resource deployment, fATM() describes the resulting
constellation of attempted studies, and fPUB() describes the
resulting constellation of published studies.

Armed with fRES(), fATM(), and fPUB(), we can investigate
the properties of a given scientific ecosystem, and how these
properties vary across ecosystems. Specifically, an ecosystem is
specified by choices of α, k, m, A, and B.

For any specification, properties of the three distributions are
readily computed via two-dimensional numerical integration
using a fine (200 by 200) grid of (psp, pwr) values. We do not
require any simulation to obtain our results (except for those
results relating to the accuracy of published research, see details
in the appendix). To illustrate, consider the much coarser 3 by

3 grid plotted in Figure 1 and see how ENP could be easily
calculated by summation across the two dimensions.

2.4. Ecosystem Metrics

We will evaluate the merits of different publication policies on
the basis of the following six ecosystem metrics of interest. In
the appendix, we provide further details on these metrics and
introduce some compact notation that will be useful for their
calculation from fRES() and its by-products.

1. The Publication Rate (PR). The ratio of the number of pub-
lished studies over the number of attempted studies is of
evident interest.

2. The Reliability (REL). The proportion of published findings
that are correct is a highly relevant metric for the scientific
ecosystem. Ideally, we wish to see a literature with as few FPs
as possible.

3. The Breakthrough Discoveries (DSCV). The ability of the
scientific ecosystem to produce breakthrough findings is
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Figure 2. Plots show the number of expected publications, ENP, for different values of PSP and PWR. The printed numbers correspond to values of ENP at psp = 0.2, 0.5,
and 0.8; and pwr = 0.2, 0.5, and 0.8. Each panel represents one ecosystem defined by α = 0.05, A = (1 − psp)m , and B = 0, with k and m as indicated by column and row
labels, respectively. Depending on k and m, the value of (PSP, PWR) that maximizes ENP can change substantially. With a higher k, higher powered strategies will yield a
greater ENP; with smaller m, optimal strategies are those with higher PSP. Assuming that researchers behave based on optimizing the use of their resources, it is interesting
to observe how the“optimal strategy” changes under different scenarios.

an important attribute. Here, a true breakthrough result is
defined as a TP and published study that results from a psp
value below a threshold of 0.05. Note that we will calculate
the total number of true breakthrough discoveries, DSCV,
for each ecosystem for T units of resources. We will also
note the reliability of breakthrough discoveries (DREL), the
proportion of positive and published studies with psp < 0.05
that are true.

4. The Balance Between Exploration and Confirmation
(IQpspPUB). The interquartile range of the distribution of
psp values amongst published studies provides an assessment
of the much discussed balance between exploratory and
confirmatory research; see Sakaluk (2016) and Kimmelman,
Mogil, and Dirnagl (2014).

5. The Median Power of Published Studies (MpwrPUB). As men-
tioned earlier, higher powered research leads to fewer yet
more reliable publications.

6. The Accuracy of Published Research. We will report the mean
absolute estimated effect size in published studies, |μ̂d|PUB,
as well as the proportion of published studies for which the

estimated effect size is negative (μ̂d
neg
PUB). It is well known that,

due to a combination of publication bias and low powered
studies, published effect sizes will be inflated, see Ioannidis
(2008); Lane and Dunlap (1978). In addition, we will report
the exaggeration ratio (the expected Type M error), and the
Type S error rate (the proportion of published studies with an
error in sign), see Gelman and Carlin (2014).

2.5. Model Calibration

Let us begin by assessing whether or not our basic model frame-
work is well calibrated. Are our modeling choices (specifically
the choice of values to consider for parameters k and m) at all
consistent with what is known about real conditions? In order to
answer this important question, we considered a large number
of different scenarios in which α is held fixed at 0.05, and both
the fixed-cost parameter, k, and the novelty parameter, m, take
various values; see Table 2.

There is a recognized lack of empirical research measuring
the relationship between experimental costs and sample sizes
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Table 2. For ecosystems defined by fixed α = 0.05, A = (1 − psp)m , and B = 0,
and varying values of k, m, and δ, the table lists estimates for the metrics of interest.

δ k m PR REL DSCV DREL MpwrPUB IQpspPUB [q25th , q75th]
0.20 20 1 0.06 0.62 0.17 0.07 0.20 0.35 [0.19 , 0.54]
0.20 20 3 0.03 0.36 0.38 0.07 0.12 0.19 [0.07 , 0.26]
0.20 20 9 0.03 0.15 0.86 0.06 0.09 0.07 [0.02 , 0.09]
0.20 100 1 0.08 0.75 0.09 0.12 0.42 0.33 [0.25 , 0.58]
0.20 100 3 0.04 0.52 0.22 0.12 0.32 0.20 [0.09 , 0.29]
0.20 100 9 0.03 0.25 0.51 0.10 0.21 0.08 [0.03 , 0.10]
0.20 500 1 0.11 0.83 0.04 0.18 0.60 0.31 [0.29 , 0.60]
0.20 500 3 0.05 0.65 0.10 0.18 0.55 0.21 [0.12 , 0.33]
0.20 500 9 0.03 0.36 0.26 0.16 0.44 0.09 [0.03 , 0.12]

0.43 20 1 0.08 0.76 0.42 0.12 0.42 0.33 [0.25 , 0.58]
0.43 20 3 0.04 0.53 1.00 0.12 0.32 0.20 [0.09 , 0.29]
0.43 20 9 0.03 0.25 2.37 0.11 0.21 0.08 [0.03 , 0.10]
0.43 100 1 0.11 0.83 0.21 0.18 0.59 0.31 [0.29 , 0.60]
0.43 100 3 0.05 0.65 0.50 0.18 0.54 0.21 [0.12 , 0.33]
0.43 100 9 0.03 0.36 1.24 0.16 0.43 0.08 [0.03 , 0.11]
0.43 500 1 0.13 0.86 0.07 0.23 0.71 0.31 [0.30 , 0.61]
0.43 500 3 0.06 0.71 0.17 0.22 0.68 0.21 [0.13 , 0.34]
0.43 500 9 0.03 0.43 0.44 0.20 0.60 0.09 [0.03 , 0.12]

NOTES: These include the publication rate (PR), the reliability (REL), the number of
true breakthrough discoveries (DSCV), the median power of published studies
(MpwrPUB), and the interquartile range of the distribution of psp values amongst
published studies (IQpspPUB), with corresponding 25th and 75th quartiles. Addi-
tionally, the table lists the reliability amongst the subset of published studies for
which psp < 0.05 (DREL).

(Roos 2017), and it is even more difficult to empirically access
appropriate values for m. However, we were able to choose
suitable values for m (= 1, 3, and 9) and k (= 20, 100, and
500) based on how our model outputs compared with empirical
estimates in the meta-research literature. Specifically, values
were chosen to exhibit a sufficiently wide range and so that
(1) the reliability, (2) the power, and (3) the publication rate
agreed, at least to a certain extent, with what has been observed
empirically. Consider the following.

1. Due to the success of several recent large-scale reproducibil-
ity projects, we are able to obtain reasonable approximations
for the reliability of published research in different scientific
fields. For example, Begley and Ioannidis (2015) estimate that
the reliability (i.e., TP rate) of social science experiments
published in the journals Nature and Science is approxi-
mately 67%. Based on the large-scale reproducibility project
of OpenScienceCollaboration (2015), Wilson and Wixted
(2018) estimate that the reliability of published studies in
well-respected social-psychology journals is approximately
49%, and in cognitive psychology journals, approximately
81%. For the chosen values of k and m, our model produces
reliability measures ranging from 15% to 83%, for δ = 0.2,
and from 25% to 86%, for δ = 0.43. Note that this wide
range of values includes some reliability percentages that
seem rather low (e.g., 15% and 25%).

2. There have also been a number of recent attempts to estimate
the typical power of published research using meta-analytic
effect sizes. For example, Button et al. (2013b) estimate that
the median statistical power in published neuroscience is
approximately 21% and Dumas-Mallet et al. (2017), using
a similar methodology, conclude that the median statistical
power in the biomedical sciences ranges from about 9% to
30% depending on the disease under study. Most recently,
Lamberink et al. (2018) analyzed the literature of RCTs and

determined that the median power is approximately 9% over-
all (and about 20% in the subset of RCTs included in signif-
icant meta-analyses). For the chosen values of k and m, our
model produces a simulated published literature with median
power ranging from 9% to 60%, for δ = 0.2, and from 21%
to 71%, for δ = 0.43.

3. While the publication rate numbers we obtain may appear
rather low, ranging from 3% to 13%, consider that Siler,
Lee, and Bero (2015), in a systematic review of manuscripts
submitted to three leading medical journals, observed a pub-
lication rate of 6.2%. In a review of top psychology journals,
Lee and Schunn (2011) found that acceptance rates ranged
between 14% and 32%. It is important to recognize that these
empirical estimates are calculated based on the subset of
studies that are submitted for publication. If researchers are
self-selecting their “most publishable” work for submission
to journals, then these estimates will substantially overes-
timate the true publication rate of all studies. Song, Loke,
and Hooper (2014) estimate that about 85% of unpublished
studies are unpublished for the simple reason that they are
never submitted for publication. Our model also assumes
that negative studies are never published (B = 0) and this
(not entirely realistic) assumption also contributes to the low
publication rate numbers we obtain. Senn (2012) provides
substantial insights on both these related issues: the level of
publication bias, and how researchers may choose to submit
research based on the perceived probability of acceptance.
Note that while the scenarios with higher publication rates
may appear more plausible, these scenarios have very (per-
haps unreasonably) high values for reliability and median
power.

Regardless of the values chosen for k and m, the overall
trends for our metrics of interest will be similar. See Table 2.
As k increases, the reliability of published research (REL) will
increase, while the number of true breakthrough discoveries
(DSCV) decreases. As m increases, reliability (REL) decreases
while the number of true breakthrough discoveries (DSCV)
increases. This strikes us as both reasonable and realistic. When
a greater emphasis is placed on novelty (i.e., when m is larger),
there will be a greater number of smaller, high-risk studies
published. While these publications are less reliable, they are
more numerous and more likely to produce a breakthrough
finding. When data are more affordable relative to overall study
cost (i.e., when k is larger), there will be fewer, larger studies and
as a result the published literature will be more reliable but less
likely to produce a breakthrough finding.

Before moving on, let us also briefly consider how the accu-
racy of published effect sizes changes with k and m, see Table 3.
Overall, we see that the average of the absolute published effect
size, |μ̂d|PUB, is always much larger than δ. Furthermore, we see
that a large proportion of published effect sizes are negative. This
is to be expected when psp values are small and many published
studies are FPs. For the subset of studies that are positive,
published, and true, we see that the Type M and the Type S errors
are greatest when k is small, m is large, and δ is small. This is the
same configuration that produces low-powered publications.
Indeed, Type M and Type S errors are known to occur more
frequently when power is low (Gelman and Carlin 2014).
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Table 3. For ecosystems defined by fixed α = 0.05, A = (1 − psp)m , and B = 0,
and varying values of k, m, and δ, the table lists estimates for the metrics of interest
related to the accuracy of the published effects sizes.

δ m k MpwrPUB μ̂d
neg
PUB |μ̂d|PUB Type M err. Type S err.

0.20 1 20 0.20 0.21 0.60 2.42 0.03
0.20 3 20 0.12 0.31 0.72 2.70 0.04
0.20 9 20 0.09 0.43 0.80 2.77 0.04
0.20 1 100 0.42 0.14 0.37 1.68 0.01
0.20 3 100 0.32 0.23 0.45 1.81 0.01
0.20 9 100 0.21 0.37 0.51 1.92 0.01
0.20 1 500 0.60 0.09 0.29 1.40 0.00
0.20 3 500 0.55 0.17 0.31 1.40 0.00
0.20 9 500 0.44 0.33 0.35 1.48 0.00

0.43 1 20 0.42 0.14 0.75 1.63 0.01
0.43 3 20 0.32 0.21 0.80 1.65 0.00
0.43 9 20 0.21 0.39 0.90 1.74 0.01
0.43 1 100 0.59 0.09 0.60 1.36 0.00
0.43 3 100 0.54 0.18 0.64 1.43 0.00
0.43 9 100 0.43 0.32 0.69 1.47 0.00
0.43 1 500 0.71 0.08 0.54 1.29 0.00
0.43 3 500 0.68 0.17 0.56 1.29 0.00
0.43 9 500 0.60 0.28 0.57 1.30 0.00

NOTES: These include the median power of published studies (MpwrPUB), the mean
absolute published effect size (|μ̂d|PUB), the proportion of published effect sizes
that are negative (μ̂d

neg
PUB), the “Type S” error, and the “Type M” error.

3. The Effects of Adopting Lower Significance
Thresholds

In this section, we investigate the impact of adopting lower
significance thresholds. How might the published literature be
different if the α = 0.05 threshold was lowered? For positive
studies, we will assume that the sample size of a study does not
affect the likelihood of publication (at least not directly) and that
studies with lower psp are more likely to be published according
to the simple function introduced earlier, A = (1 − psp)m.
We compute the metrics of interest for 54 different ecosystems.
Each ecosystem is uniquely defined with either δ = 0.2 or
δ = 0.43, with one of three possible values for m (= 1, 3, 9),
with one of three possible values for k (= 20, 100, 500), and
most importantly, with one of three possible values for the α

significance threshold (= 0.005, 0.020, 0.050).

3.1. Results

In Table 4, we note how the various metrics change with
α = 0.005 relative to α = 0.05, by reporting ratios. While
we focus our discussion specifically on scenarios for which
δ = 0.20, the results for δ = 0.43 are all very similar. Figures
in the supplemental material plot the complete results. Based
on our results, we can make the following conclusions on
the impact of adopting a lower, more stringent, significance
threshold.

1. Reliability is substantially increased with a lower threshold.
Based on our results, comparing α = 0.005 to α = 0.05, the
impact on REL is greatest when δ is small, k is small, and m is
large, see Table 4. This is due to the fact that with a lower sig-
nificance threshold policy, attempted studies are typically of
higher power (particularly so when k is small) and of higher
prestudy probability. To understand why there would be more
studies with higher power and higher prestudy probabilities,

Table 4. A comparison between ecosystems with α = 0.05 and ecosystems with
α = 0.005.

Change in Change in Change in Change in Change in Change in
δ k m PR REL DSCV DREL MpwrPUB IQpspPUB

0.20 20 1 1.14 1.58 0.12 7.57 2.73 0.83
0.20 20 3 0.71 2.58 0.15 7.68 4.57 1.05
0.20 20 9 0.32 5.38 0.21 8.01 5.11 1.46
0.20 100 1 0.99 1.30 0.19 5.47 1.37 0.86
0.20 100 3 0.73 1.81 0.23 5.57 1.77 0.95
0.20 100 9 0.39 3.47 0.31 5.89 2.52 1.27
0.20 500 1 0.91 1.18 0.28 4.06 1.07 0.89
0.20 500 3 0.75 1.48 0.33 4.14 1.17 0.95
0.20 500 9 0.46 2.49 0.43 4.40 1.42 1.12

0.43 20 1 0.99 1.30 0.19 5.49 1.36 0.86
0.43 20 3 0.74 1.81 0.22 5.59 1.78 0.95
0.43 20 9 0.39 3.46 0.31 5.91 2.55 1.27
0.43 100 1 0.92 1.18 0.28 4.10 1.08 0.89
0.43 100 3 0.75 1.49 0.32 4.18 1.19 0.95
0.43 100 9 0.46 2.51 0.42 4.44 1.44 1.19
0.43 500 1 0.92 1.14 0.37 3.49 1.02 0.90
0.43 500 3 0.78 1.37 0.42 3.55 1.07 0.95
0.43 500 9 0.51 2.15 0.55 3.78 1.19 1.12

NOTES: For all ecosystems, we have A = (1 − psp)m, B = 0, and varying values of
k, m, and δ. The table lists estimates for the ratios of the publication rate (PR),
the ratio of the reliability (REL), the ratio of the number of true breakthrough
discoveries (DSCV), the ratio of the median power of published studies(MpwrPUB),
and the ratio of the interquartile range of the distribution of psp values amongst
published studies (IQpspPUB).

consider that with a lower α threshold, the probability of
obtaining a significant result (i.e., p-value < α) “by chance”
is substantially reduced. To maximize one’s expected number
of publications (ENP) when α = 0.005, it is a much better
strategy to pursue higher pwr and higher psp strategies. This
is particularly true when the effect size, δ, is small.

2. A disadvantage of the lower threshold is that the number of
breakthrough discoveries is substantially lower, see Table 4
and Figure S3. This is due to the fact that with a lower
α threshold, fewer “high-risk” (i.e., low psp) studies are
attempted. The chance that the p-value will fall below α,
when α is lowered to 0.005, is already risky enough. The
DREL numbers we obtain suggest that, while fewer low psp
studies will be published, these will be much more reliable.

3. When increasing study power is less costly relative to the
total cost of a study (i.e., when k is larger, or when δ is
larger), the benefit of lowering the significance threshold
(increased REL) is somewhat smaller. However, the downside
(decreased DSCV) is substantially smaller, see left-panels of
Figures S1 and S3. This suggests that a policy of lowering
the significance threshold would perhaps be best suited in a
field of research in which increasing one’s sample size is less
burdensome. This nuance recalls the suggestion of Ioannidis,
Hozo, and Djulbegovic (2013): “Instead of trying to fit all
studies to traditionally acceptable Type I and Type II errors, it
may be preferable for investigators to select Type I and Type II
error pairs that are optimal for the truly important outcomes
and for clinically or biologically meaningful effect sizes.”

4. When novelty is more of a requirement for publication (i.e.,
when m is larger), the benefit of lowering the significance
threshold is larger and the downside smaller. This result is
due to the fact that a smaller α will incentivize researchers
to allocate resources in the direction toward either higher
powered or higher psp studies (i.e., away from the South-
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West corner of the plots in Figure 2). There is a choice
between moving toward higher pwr (North) or toward
higher psp (East), and different costs associated with each
direction. This suggests that for a lower significance threshold
policy to be most effective, editors should also adopt, in
conjunction, stricter requirements for research novelty. To
illustrate, consider three ecosystems of potential interest
with their estimated REL, DSCV , and PR metrics (all with
δ = 0.2):

(1) The baseline defined by α = 0.05, m = 3, and k = 500
with:
REL = 0.650, DSCV = 0.105, and PR = 0.054;

(2) the alternative defined by α = 0.005, m = 3, and k =
500 with:
REL = 0.963, DSCV = 0.034, and PR =0.040; and

(3) the suggested defined by α = 0.005, m = 9, and k =
500 with:
REL = 0.898, DSCV = 0.112, and PR =0.015.
Note that while the suggested has high REL and rela-
tively high DSCV, the PR is substantially reduced.

5. As mentioned earlier, the balance between exploratory and
confirmatory research is an important aspect of a scientific
ecosystem. The results show that the interquartile range for
psp does not change substantially with α. As such, we could

conclude that even with a much lower significance threshold,
there will still be a wide range of studies attempted in terms
of their psp. However, psp values do tend to be substantially
higher with smaller α. As such, we should expect that, with
smaller α, research will move toward more confirmatory, and
less exploratory studies.

6. With a lower α significance threshold, the published effect
sizes are much more accurate. When α = 0.005, the Type M
error is reduced to at most 1.4 (i.e., effect size estimates are
inflated by at most 40%) and Type S error is negligible; see
Figures 4, 5, S7 and S8. These reductions are greatest when
data are relatively expensive and when the true effect size is
small (i.e. when k = 20 and δ = 0.20).

4. The Effects of Strict a priori Power Calculation
Requirements

In this section, we investigate the effects of requiring “sufficient”
sample sizes. In practical terms, this means adopting publication
policies that require studies to show a priori power calculations
indicating that sample sizes are “sufficiently large” to achieve the
desired level of statistical power, typically 80%. Whereas before,
the chance of publishing a positive study in our framework
depended only on psp, we now set the probability of publication,
A, to also depend on power. In doing so however, we wish to

Figure 3. Heat-maps show the density of published articles, fPUB(psp, pwr), for the four policies of interest, with fixed δ = 0.2, k = 500 and m = 3.
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Figure 4. Values of μ̂d
neg
PUB for varying values of k, m and α; results for δ = 0.2 and δ = 0.43 on the left and right panels, respectively. Top panels shows results with no

power requirement (i.e., A = (1 − psp)m). Bottom panels shows results with power requirement (i.e., A defined as per equation A4 (with c50 = 0.5 and c95 = 0.8)).

acknowledge the fact that a priori sample size claims are often
“wildly optimistic” (Bland 2009).

The “sample size samba” (Schulz and Grimes 2005)—the
practice of “tweaking aspects of sample size calculation” (Hazra
and Gogtay 2016) in order to obtain what is affordable—often
results in a study with less than 80% power being advertised as
having 80% power. Even in ideal circumstances, power can be
exaggerated due to “optimism bias” (Djulbegovic et al. 2011),
also known as the “illusion of power” (Vasishth and Gel-
man 2017), which occurs when the anticipated effect size is
based on a literature filled with overestimates due to publication
bias.

To take into account the problematic nature of a priori power
calculations, our model is defined such that possessing only 50%
power substantially reduces, but does not eliminate, the chance
of publication. For studies which really do have 80% power and
higher, there will be no notable reduction in the probability of
publication. See the appendix for details on how we define A as
a continuous function of both psp and pwr.

We calculated the metrics of interest for the same 54 different
ecosystems as in Section 3, with our new definition of A. To
contrast these ecosystems with those discussed in the previous
section, we refer to these ecosystems as “with SSR” (sample size
requirements).

4.1. Results

See Table 5. Based on our results, we can make the follow-
ing main conclusions on the measurable consequences of
adopting a journal policy requiring an a priori sample size
justification.

1. With SSR, we observed much higher powered studies, see
Figure S5. Reliability is also increased, particularly when
novelty is highly prized (m is large) and effect sizes are small.
This result is as expected. As soon as having a small sample
size jeopardizes the probability of publication, it is in the
researcher’s best interest to conduct higher powered studies.

2. Requiring “sufficient sample sizes” for publication can be
quite detrimental in terms of the number of breakthrough
discoveries. The impact on DSCV is greatest when δ, k, and
m are all small; see Table 5. The DREL numbers show that
reliability is particularly increased for low psp publications.

3. In conjunction with requiring larger sample sizes, it may be
wise to place greater emphasis on research novelty. As in
Section 3, such a combined approach could see an increase
in reliability with only a limited decrease in discovery. This
trade-off is most beneficial when k is small. Consider three
ecosystems of potential interest (all with α = 0.05, and
δ = 0.2) with their estimated REL, DSCV, and PR metrics:
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Table 5. A comparison between ecosystems with a sample size requirement and
ecosystems without.

Change in Change in Change in Change in Change in Change in
δ k m PR REL DSCV DREL MpwrPUB IQpspPUB

0.20 20 1 1.46 1.44 0.32 3.97 3.57 0.87
0.20 20 3 1.04 2.08 0.35 4.01 6.13 1.08
0.20 20 9 0.65 3.33 0.41 4.12 7.61 1.38
0.20 100 1 1.21 1.18 0.53 2.40 1.74 0.92
0.20 100 3 1.03 1.44 0.56 2.42 2.25 1.00
0.20 100 9 0.77 2.03 0.63 2.48 3.33 1.20
0.20 500 1 1.08 1.07 0.75 1.63 1.27 0.95
0.20 500 3 1.00 1.18 0.79 1.64 1.39 1.00
0.20 500 9 0.85 1.44 0.85 1.67 1.68 1.06

0.43 20 1 1.21 1.18 0.53 2.39 1.72 0.92
0.43 20 3 1.03 1.44 0.56 2.41 2.25 1.00
0.43 20 9 0.77 2.02 0.63 2.47 3.33 1.20
0.43 100 1 1.08 1.07 0.74 1.65 1.29 0.95
0.43 100 3 1.00 1.19 0.78 1.66 1.41 1.00
0.43 100 9 0.85 1.45 0.85 1.69 1.72 1.12
0.43 500 1 1.04 1.04 0.89 1.38 1.14 0.97
0.43 500 3 1.00 1.10 0.92 1.38 1.19 1.00
0.43 500 9 0.90 1.25 0.98 1.40 1.32 1.12

NOTE: A is defined by equation A4 (with c50 = 0.5 and c95 = 0.8), B = 0, α = 0.05,
and varying values of k and m.

(1) The baseline defined by m = 3, k = 100, and without
SSR; with REL = 0.524, DSCV = 0.216, and PR = 0.043;

(2) the alternative defined by m = 3, k = 100 and with SSR;
with REL = 0.757, DSCV = 0.122, and PR = 0.044; and

(3) the suggested defined by m = 6, k = 100 and with SSR;
with REL = 0.502, DSCV = 0.325, and
PR = 0.022.
Note that the while the suggested has both higher
REL and higher DSCV than the baseline, the PR is
reduced.

4. With SSR, the Type M error is at most 1.2 (i.e., effect size
estimates are inflated by at most 20%) and Type S error is
negligible; see Figures 4, 5, S7 and S8.

4.2. In Tandem: The Effects of Adopting Both a Lower
Significance Threshold and a Power Requirement

We are also curious as to whether lowering the significance
threshold in addition to requiring larger sample sizes would
carry any additional benefits relative to each policy innovation
on its own. See Table A.1 for results, and consider two main
findings:

1. For ecosystems with SSR, the distribution of published stud-
ies does not change dramatically when α is lowered. Figure 3
shows the density describing the characteristics of published
studies, fPUB(psp, pwr), for the four policies of interest, with
k = 500 and m = 3: (1) α = 0.05, without SSR; (2) α = 0.05,
with SSR; (3) α = 0.005, without SSR; and (4) α = 0.005,

Figure 5. Values of |μ̂d|PUB for varying values of k, m and α; results for δ = 0.2 and δ = 0.43 on the left and right panels respectively. Top panels shows results with no
power requirement (i.e., A = (1 − psp)m). Bottom panels shows results with power requirement (i.e., A defined as per equation A4 (with c50 = 0.5 and c95 = 0.8)).
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with SSR. The difference between the densities in (2) and (4)
is primarily a matter of a shift in psp.

2. As expected, lowering the significance threshold further
increases reliability and the number of breakthrough
discoveries is further decreased; see Table A.1, and Figures
S1 and S3.

5. Conclusion

There remains substantial disagreement on the merits of requir-
ing greater statistical stringency to address the reproducibility
crisis. Yet all should agree that innovative publication poli-
cies can be part of the solution. Going forward, it is impor-
tant to recognize that current norms for Type 1 and Type 2
error levels have been driven (almost) entirely by tradition and
inertia rather than careful coherent planning and result-driven
decisions (Hubbard and Bayarri 2003). Hence, improvements
should be possible.

In response to Amrhein, Korner-Nievergelt, and Roth (2017)
who suggest that a more stringent α threshold will lead to pub-
lished science being less reliable, our results suggest otherwise.
However, just as Amrhein, Korner-Nievergelt, and Roth (2017)
contend, our results indicate that the publication rate will end
up being substantially lower with a smaller α. While going
from p < 0.05 to p < 0.005 may be beneficial to published
science in terms of reliability, we caution that there may be a
large cost in terms of fewer true breakthrough discoveries. One
must ask whether a large reduction in novel discoveries is an
acceptable price to pay for a large increase in their reliability?
Importantly, and somewhat unexpectedly, our results suggest
that this can be mitigated (to some degree) by adopting a greater
emphasis on research novelty. In practice, implementing stricter
requirements for research novelty, could be accomplished by
greater editorial emphasis on “surprising results” as a requisite
for publication. This approach, however, might be difficult to
achieve unless one is willing to accept a much lower publication
rate. In summary, publishing less may be the necessary price to
pay for obtaining more reliable science.

Recently, some have suggested that researchers choose (and
justify) an “optimal” value for α, for each unique study; see
Mudge et al. (2012), Ioannidis, Hozo, and Djulbegovic (2013),
and Lakens et al. (2018). Each study within a journal would
thereby have a different set of criteria. This is a most interesting
idea and there are persuasive arguments in favor of such an
approach. Still, it is difficult to anticipate how such a policy
would play out in practice and how the research incentive struc-
ture would change in response. A model, like the one presented
here, but with the α threshold set to vary with psp, could provide
useful insight.

We are also cautious about greater sample size requirements.
In summary, we found that the impacts of adopting a sample
size requirement policy are similar to the impacts of lower-
ing the α significance threshold. While improving reliability,
requiring studies to show “sufficient power” will severely limit
novel discoveries in fields where acquiring data is expensive.
Is it beneficial for editors and reviewers to consider whether a
study has “sufficient power”? How much should these criteria
influence publication decisions? Answers to these questions are

not at all obvious. Again, using the methodology introduced,
we suggest that adopting a greater emphasis on research nov-
elty may mitigate, to a certain extent, some of the downside
of adopting greater sample size requirements at the cost of
lowering the overall number of published studies. Given that,
as a result of publication bias, it can often be better to discard
90% of published results for meta-analytical purposes (Stanley,
Jarrell, and Doucouliagos 2010), this may be an approach worth
considering.

Our main recommendation is that, before adopting any
(radical) policy changes, we should take a moment to carefully
consider, and model how, these proposed changes might
impact outcomes. The methodology we present here can be
easily extended to do just this. Two scenarios of interest come
immediately to mind.

First, it would be interesting to explore the impact of publica-
tion bias, i.e., the tendency of journals to reject non-significant
results (Sterling, Rosenbaum, and Weinkam 1995). This could
be done by allowing B to take different non-zero values. Based
on simulation studies, de Winter and Happee (2013) suggest
that publication bias can in fact be beneficial for the reliability
of science. However, under slightly different assumptions, van
Assen et al. (2014) arrive at a very different conclusion. Clearly,
a better understanding of how publication bias changes a sci-
entist’s incentives is needed. If statistical significance becomes
a much less important screening criterion for publication, how
will published science change? Recently, a number of influential
researchers have argued that to address low reliability, reviewers
should “abandon statistical significance” (McShane et al. 2017).
While our framework could be extended to explore this proposal
(e.g., by taking A = B), these researchers suggest substituting
statistical significance with a “more holistic view of the evi-
dence” to inform publication decisions. Clearly, this does not
lend itself to our modeling framework, or similar meta-research
paradigms.

Second, it would be worthwhile to investigate the poten-
tial impact of requiring study preregistration. Coffman and
Niederle (2015) use the accounting of Ioannidis (2005) to eval-
uate the effect of preregistration on reliability and conclude that
pre-registration will have only a modest impact. However, the
impact on the publication rate and on the number of break-
through findings is still not well understood. This is particularly
relevant given the current trend to adopt “result-blind peer-
review” (Greve, Bröder, and Erdfelder 2013) policies including,
most recently, the policy of Registered Reports (Chambers et al.
2015). The conditional equivalence testing publication policy
proposed in our earlier work, see Campbell and Gustafson
(2018), could also be considered.

Our methodology assumes above all that researchers’ deci-
sions are driven exclusively by the desire to publish. But the
situation is more complex. Publication is not necessarily the
end goal for a scientific study and requirements with regards to
significance and power are not only encountered at the publi-
cation stage. In the planning stages, before a study even begins,
ethics committees and granting agencies will often have certain
minimal requirements; see Ploutz-Snyder, Fiedler, and Feiveson
(2014) and Halpern, Karlawish, and Berlin (2002). And after a
study is published, regulatory bodies and policy makers will also
often subject the results to a different set of norms.
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We also assumed a framework of independent Bernoulli tri-
als. Of course, in practice, most studies are not conducted inde-
pendently. For example, in the context of clinical trials, phase 3
studies are conducted based on the success or failure of earlier
phase 2 studies (see Burt et al. (2017) who model the advantages
and disadvantages of different clinical development strategies).
It is difficult to anticipate the consequences of failing to incorpo-
rate such dependencies in our model. A more elaborate model,
in which studies are correlated and the psp of subsequent studies
is updated appropriately, could prove very informative.

Finally, it is important to acknowledge that no publication
policy will be perfect. Science is inherently challenging and
we must always be willing to accept that a certain proportion
of research is potentially false (Contopoulos-Ioannidis, Ntzani,
and Ioannidis 2003; Djulbegovic and Hozo 2007). Each policy
will have its advantages and disadvantages. Our modeling exer-
cise makes this all the more evident and forces us to carefully
consider different potential trade-offs.

Code

Please note that all code to produce the results, tables, and figures in this
article have been posted to a repository on the Open Science Framework,
DOI 10.17605/OSF.IO/YQCVA.
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Appendix

Here, we introduce some compact notation that will be useful for
expressing distributional quantities of interest. Particularly, the proba-
bilities comprising the distribution of a study across the eight categories
are expressed as qabc(psp, pwr), where a ∈ {0, 1} indicates the truth
(a = 0 for null, a = 1 for alternative), b ∈ {0, 1} indicates the statistical
finding (b = 0 for negative, b = 1 for positive), and c ∈ {U, P} indicates
publication status. As examples, we could write FNUN = q10U , or
TPPUB = q11P . We also use a plus notation to add over subscripts,
so, for instance, q1+P = TPPUB + FNPUB.

As motivated above, we consider properties that result from a
scientist or group of scientists stochastically allocating T resources (not
studies per se) according to a distribution across (psp, pwr). We denote
the function n(pwr) as the required sample size to obtain a power of
pwr. Presuming the incentive to publish, the density of this distribution
is taken proportional to ENP(psp, pwr), which we express as

fRES(psp, pwr) ∝ ENP(psp, pwr)
∝ {k + n(pwr)}−1q++P(psp, pwr). (A1)

Consequently, the distribution of (psp, pwr) across attempted studies
has density

fATM(psp, pwr) ∝ {k + n(pwr)}−1fRES(psp, pwr)
∝ {k + n(pwr)}−2q++P(psp, pwr). (A2)

In turn, the distribution of (psp, pwr) across published studies has
density

fPUB(psp, pwr) ∝ fATM(psp, pwr)q++P(psp, pwr)
∝ {k + n(pwr)}−2{q++P(psp, pwr)}2. (A3)

Note particularly that fPUB(psp, pwr) ∝ {fRES(psp, pwr)}2. Hence, the
distribution of (psp, pwr) across published studies is a concentrated
version of the distribution describing how resources are deployed.

A1. Ecosystem Metrics: Further Details

We evaluate each ecosystem of interest on the basis of the following five
metrics.

A1.1.Publication Rate and the Number of Studies
Attempted/Published
If T units of resources are deployed according to fRES(), then we expect
that NATM studies will be attempted, where

T−1NATM = ERES
[
{k + n(PWR)}−1

]
.

Similarly, NPUB studies will be published, with

T−1NPUB = ERES
[
{k + n(PWR)}−1q++P(PSP, PWR)

]
.

The ratio NPUB/NATM, which does not depend on T, is of evident
interest, as the publication rate (PR) for attempted studies.

A1.1.2. The Reliability (REL)
A highly relevant metric for the scientific ecosystem is the proportion of
published findings that are correct. In all the ecosystems, we consider
in this article, we make the assumption that only positive results are
published (i.e., B = 0). Therefore, we can express reliability (REL)
simply as

REL = EATM
{

q11P(PSP, PWR)
}

EATM
{

q+1P(PSP, PWR)
} .

More generally, in ecosystems where negative results might be pub-
lished (i.e., B(psp, pwr) �= 0), the reliability would equal the proportion
of published articles that reach a correct conclusion, i.e.,

REL = EATM
{

q00P(PSP, PWR) + q11P(PSP, PWR)
}

EATM
{

q++P(PSP, PWR)
} .

A1.1.3. Breakthrough Discoveries (DSCV)
The ability of the scientific ecosystem to produce breakthrough findings
is an important attribute. We quantify this in terms of spending T
resource units yielding an expectation of DSCV breakthrough results.
Here, a true breakthrough result is defined as a TP and published study
that results from a psp value below a threshold, that is, a very surprising
positive finding that gets published and also happens to be true. If we
set the breakthrough threshold as psp < 0.05, then

T−1DSCV = ERES

{
I(0,0.05)(PSP)

q11P(PSP, PWR)

k + n(PWR)

}

Note that we can also write this out in terms of the density of
attempted studies, fATM:

T−1DSCV =
∫

h(PSP, PWR)fATM(PSP, PWR)(k + n(PWR))∫
fATM(PSP, PWR)(k + n(PWR))

= EATM[I(0,0.05)(PSP)q11P(PSP, PWR)]
EATM[k + n(PWR)] .
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where we define the function: h(PSP, PWR) = I(0,0.05)(PSP)
q11P(PSP,PWR)

k+n(PWR)
.

We also wish to quantify the reliability of those published studies
with psp values below a threshold of 0.05. We have that:

DREL = EATM
{

I(0,0.05)(PSP)q11P(PSP, PWR)
}

EATM
{

I(0,0.05)(PSP)q+1P(PSP, PWR)
} .

A1.1.4. The Median Power of Published Studies (MpwrPUB)
We already mentioned the relevance of the psp marginals of (A2) and
(A3). In a similar vein, the marginal distributions of pwr under each
of these distributions are readily interpreted metrics of the ecosys-
tem. We define MpwrPUB as the median of pwr under the fPUB()

distribution.

A1.1.5. The Balance between Exploration and Confirma-
tion (IQpspPUB)
There has been much discussion about the desired balance between
researchers looking for a priori unlikely relationships versus confirming
suspected relationships put forth by other researchers; see for exam-
ple, Sakaluk (2016) and Kimmelman, Mogil, and Dirnagl (2014). The
marginal distribution of psp arising from fATM(psp, pwr) describes the
balance between exploration versus confirmation for attempted studies,
while the psp marginal from fPUB(psp, pwr) does the same for published
studies. More specifically, we report the interquartile ranges of these
marginal distributions for a given ecosystem.

A1.1.6. The Accuracy of Published Research
Consider extending fATM(psp, pwr) to fATM(psp, pwr, d, u),
where:

fATM(d, u|psp, pwr) = fATM(d|psp, pwr)fATM(u), and where

• fATM(u) is the density of a standard uniform distribution; and
• fATM(d|psp, pwr) is the density of a two-component mixture distri-

bution such that:
Pr(d = δ) = psp; and Pr(d = 0) = 1 − psp.

In order to obtain a sample from the distribution of published effect
sizes, we proceed according to the following steps.
Set w = 1, q = 1 and b = 1. While w < 1000:

1. Draw a Monte Carlo realization of (psp[b], pwr[b], d[b], u[b]) from
fATM(psp, pwr, d, u).

2. Simulate a two-sample Normally distributed dataset, data[b], with a
sample size of n(pwr[b]), a true difference in population means of
μd = d[b], and a true variance of σ 2 = 1.

3. Run a standard t-test on data[b], and obtain the estimated effect size,
δ̂[b], and the two-sided p-value, pval[b].

4. If u[b] < A(psp[b], pwr[b]) AND pval[b] < α, then do:
δ̂
[q]
+1P = δ̂[b]; and q = q + 1.

5. If u[b] < A(psp[b], pwr[b]) AND pval[b] < α, AND d[b] = δ, then
do:

δ̂
[w]
11P = δ̂[b]; and w = w + 1.

6. Set b = b + 1.

Then we have that {δ̂+1P} is a Monte Carlo sample from the condi-
tional distribution of effect sizes given that studies are both positive and
published. We also have that {δ̂11P} is a Monte Carlo sample from the
conditional distribution of effect sizes given that studies are positive,
and published, and true.

Using these Monte Carlo samples, we can easily approximate the
following metrics of interest:

• Mean Absolute Published Effect Size (|μ̂d|PUB). Approximated as
the mean of |{δ̂+1P}|.

• Proportion of Published Effect Sizes that are Negative (μ̂d
neg
PUB).

Approximated as the proportion of {δ̂+1P} that are less than
zero.

• The “Type S” error. Approximated as the proportion of {δ̂11P} less
than 0.

• The “Type M” error. Approximated as the mean of the absolute
effect size divided by the true effect size: |{δ̂11P}|/δ.

A2. The Probability of Publication as a Function of Both psp
and pwr

In Section 3, the chance of publishing a positive study in our framework
depended only on novelty via

A = (1 − psp)m.

For Section 4, a convenient choice of function to represent a journal
policy of requiring an a priori sample size justification would be:

A = (1 − psp)m

1 + exp
{
−(log 19)

pwr−c50
c95−c50

} . (A4)

So A is reduced more when power is lower, with the extent of the
reduction parameterized by (c50, c95). Specifically, c95 is the value for
pwr at which the multiplicative reduction is near negligible (factor
of 0.95), while c50 is the value for pwr at which the multiplicative
reduction is a factor of 0.5. We conduct our experimentation using
c50, c95 = (0.5, 0.8), with the following rationale. If a journal does
require an a priori sample size justification, a claim of 80% power
is the typical requirement. Hence, a study which really attains 80%
power is not likely to suffer in its quest for publication, motivating
c95 = 0.8.

A3. Additional Results

Table A.1. A comparison between ecosystems with both a sample size require-
ment and α = 0.005 and ecosystems without a sample size requirement and
α = 0.05.

Change in Change in Change in Change in Change in Change in
δ k m PR REL DSCV DREL MpwrPUB IQpspPUB

0.20 20 1 1.77 1.61 0.09 11.83 3.77 0.83
0.20 20 3 1.14 2.69 0.10 12.16 6.57 1.03
0.20 20 9 0.53 6.31 0.15 13.23 8.33 1.46
0.20 100 1 1.29 1.31 0.15 6.99 1.81 0.86
0.20 100 3 0.97 1.86 0.17 7.17 2.38 0.95
0.20 100 9 0.52 3.78 0.25 7.77 3.60 1.33
0.20 500 1 1.03 1.19 0.24 4.57 1.29 0.90
0.20 500 3 0.85 1.50 0.28 4.68 1.43 0.93
0.20 500 9 0.52 2.60 0.38 5.03 1.76 1.18

0.43 20 1 1.29 1.31 0.15 6.97 1.79 0.86
0.43 20 3 0.97 1.86 0.17 7.15 2.38 0.95
0.43 20 9 0.52 3.77 0.25 7.74 3.60 1.33
0.43 100 1 1.04 1.19 0.24 4.63 1.31 0.90
0.43 100 3 0.85 1.51 0.28 4.74 1.44 0.93
0.43 100 9 0.52 2.62 0.37 5.09 1.80 1.25
0.43 500 1 0.97 1.15 0.36 3.72 1.15 0.92
0.43 500 3 0.83 1.38 0.41 3.80 1.21 0.95
0.43 500 9 0.54 2.20 0.53 4.07 1.35 1.18

NOTES: For those with a sample size requirement, A is defined by equation A4
(with c50 = 0.5 and c95 = 0.8). For those without a sample size requirement,
A = (1 − psp)m . For all we have B = 0, and varying values of k and m as
indicated.
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Supplemental materials

The supplementary material includes additional figures which plot various
metrics of interest across the entire set of ecosystems considered.
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