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Abstract
1. Count data are ubiquitous in ecology and the Poisson generalized linear model 

(GLM) is commonly used to model the association between counts and explanatory 
variables of interest. When fitting this model to the data, one typically proceeds 
by first confirming that the model assumptions are satisfied. If the residuals ap-
pear to be overdispersed or if there is zero- inflation, key assumptions of the Poison 
GLM may be violated and researchers will then typically consider alternatives to 
the Poison GLM. An important question is whether the potential model selection 
bias introduced by this data- driven multi- stage procedure merits concern.

2. Here we conduct a large- scale simulation study to investigate the potential con-
sequences of model selection bias that can arise in the simple scenario of analys-
ing a sample of potentially overdispersed, potentially zero- inflated, count data. 
Specifically, we investigate model selection procedures recently recommended 
by Blasco- Moreno et al. (2019) using either a series of score tests or information 
theoretic criteria to select the best model.

3. We find that, when sample sizes are small, model selection based on preliminary 
score tests (or information theoretic criteria, e.g. AIC, BIC) can lead to potentially 
substantial inflation of false positive rates (i.e. type 1 error inflation). When sample 
sizes are sufficiently large, model selection based on preliminary score tests, is not 
problematic.

4. Ignoring the possibility of overdispersion and zero- inflation during data analyses 
can lead to invalid inference. However, if one does not have sufficient power to 
test for overdispersion and zero- inflation, post hoc model selection may also lead 
to substantial bias. This ‘catch- 22’ suggests that, if sample sizes are small, a healthy 
skepticism is warranted whenever one rejects the null hypothesis of no associa-
tion between a given outcome and covariate.
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1  | INTRODUC TION

Despite the ongoing debate surrounding the use (and misuse) of sig-
nificance testing in ecology (Dushoff et al., 2019; Murtaugh, 2014) 

and in other fields (Amrhein et al., 2019), hypothesis testing re-
mains prevalent. Indeed, many research fields have been criticized 
for publishing studies with serious errors of testing and interpreta-
tion, and ecologists have been accused of being ‘confused’ about 
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when and how to conduct appropriate hypothesis tests (Stephens 
et al., 2005). One issue that receives a substantial amount of atten-
tion is that of failing to check for possible violations of distributional 
assumptions. According to Freckleton (2009), using statistical tests 
that assume a given distribution on the data while failing to test 
for the assumptions required of said distribution is one of ‘seven 
deadly sins’.

One of the most popular statistical models in ecology (and in 
many other fields, e.g. finance, psychology, neuroscience, and mi-
crobiome research (Bening & Korolev, 2012, Loeys et al., 2012, 
Zoltowski & Pillow, 2018, Xu et al., 2015)) is the Poisson general-
ized linear model (GLM; Nelder & Wedderburn, 1972). With count 
response data, a Poisson GLM is the most common starting point 
for testing an association between a given response, Y, and a given 
covariate of interest, X. A Poisson GLM assumes the response data, 
conditional on the covariates, are the result of independent sam-
pling from a Poisson distribution where, importantly, the mean and 
variance are equal. However, in practice, count data will often show 
more variation than is implied by the Poisson distribution and the 
use of Poisson models is not always appropriate (Cox, 1983).

Count data frequently exhibit two (related) characteristics: (a) 
overdispersion and (b) zero- inflation. Overdispersion refers to an 
excess of variability, while zero- inflation refers to an excess of zeros 
(Yang et al., 2010). If model residuals are overdispersed or have an 
excess of zeros, assumptions underlying a Poisson GLM will not hold 
and ignoring this will lead to serious errors (e.g. biased parameter 
estimates and invalid standard errors; Harrison, 2014). It is therefore 
routine practice for researchers to check if the assumptions required 
of a Poisson model hold and adopt an alternative statistical model in 
the event that they do not; see Zuur et al. (2010).

In the case of overdispersion, popular alternatives to the Poison 
GLM include the Quasi- Poisson (QP) model (Wedderburn, 1974) 
and the negative binomial (NB) model (Lindén & Mäntyniemi, 2011; 
Richards, 2008). (Note that when selecting between the QP and NB 
models, the best choice is not always straightforward; see Ver Hoef 
and Boveng (2007), also see Potts and Elith (2006).) In the case of 
zero- inflation, popular alternatives to the Poison GLM include the 
zero- inflated Poisson model (ZIP; Lambert, 1992; Martin et al., 2005) 
and the zero- inflated negative binomial model (ZINB; Greene, 1994).

A multi- stage procedure will typically have researchers testing 
for overdispersion and zero- inflation in a preliminary stage (based 
on the residuals from a Poisson GLM), before testing the main hy-
pothesis of interest (i.e. the association between Y and X) in a second 
stage; see Blasco- Moreno et al. (2019). If the first stage tests are not 
significant, a Poisson GLM is selected, regression coefficients are es-
timated along with their standard errors, and p- values are calculated 
allowing one to test for the association between Y and X. On the 
other hand, if the first stage test for overdispersion is significant, a 
QP or a NB model will be fit to the data. Or, alternatively, if the first 
stage test for zero- inflation is significant, a ZIP model may be used. 
In cases when there is evidence of both overdispersion and zero- 
inflation, more complex models such as the ZINB model or hurdle 
models will often be considered; see Zorn (1998).

Such a multi- stage, multi- test procedure may appear rather rea-
sonable, and goodness- of- fit tests are frequently reported to con-
firm that the model- selection is appropriate. However, recently, 
some researchers have warned against preliminary testing for dis-
tributional assumptions; for example, Shuster (2005) and Wells 
and Hintze (2007). Their warnings are based on the following con-
cern: since the preliminary tests are applied to the same data as 
the main hypothesis tests, this multi- stage procedure amounts to 
‘using the data twice’ or ‘double dipping’; see Devezer et al. (2020) 
and Kriegeskorte et al. (2009). A hypothesis test using a model se-
lected based on preliminary testing fails to take into account one's 
uncertainty with regards to the distributional properties of the data. 
Unless the preliminary tests and the main hypothesis tests are en-
tirely independent, this can result in model selection bias.

The model selection bias at issue here is not the better known 
model selection bias associated with deciding post hoc which vari-
ables to include in the model, for example, the model selection 
bias associated with stepwise regression (Hurvich & Tsai, 1990; 
Whittingham et al., 2005). Instead, here we are concerned with 
the potential bias introduced when deciding post hoc which distri-
butional assumptions should be accepted. The implications of con-
sidering post hoc alternatives (or adjustments) to accommodate for 
distributional assumptions have been previously considered in other 
contexts. Three examples come to mind.

First, in the context of time- to- event data, the consequences of 
checking and adjusting for potential violations of the proportional 
hazards (PH) assumption required of a Cox PH model are considered 
by Campbell and Dean (2014). The authors find that the ‘common 
two- stage approach’ (in which one selects a model based on a pre-
liminary test for PH) can lead to substantial inflation of false- positive 
rates (i.e. inflation of the type 1 error), even in scenarios where there 
is no violation of the PH assumption.

Second, in the simple context of testing the means of two inde-
pendent samples, Rochon et al. (2012) investigate the consequences 
of conducting a preliminary test for normality (e.g. the Shapiro– Wilk 
test). The authors conclude that while ‘[f]rom a formal perspective, 
preliminary testing for normality is incorrect and should therefore 
be avoided’, in practice, ‘preliminary testing does not seem to cause 
much harm’.

Finally, in the context of clinical trials, factorial trials are an ef-
ficient method of estimating multiple treatments in a single trial. 
However, factorial trials rely on the strict assumption of no interac-
tion between the different treatments. Kahan (2013) investigates 
the consequences of conducting a preliminary test for the interac-
tion between treatment arms (as is often recommended). By means 
of a simulation study, Kahan (2013) shows that the estimated treat-
ment effect from a factorial trial under the ‘two- stage analysis’ can 
be severely biased, even in the absence of a true interaction.

Model averaging is a possible solution to the problem of model- 
selection bias. However, model averaging is known to be computa-
tionally demanding and correctly interpreting parameter estimates 
may be difficult; see Hooten and Hefley (2019). Indeed, Cade (2015) 
warns of ‘seriously compromised statistical interpretations’.
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Model selection bias is considered a ‘quiet scandal in the statisti-
cal community’ (Breiman, 1992) and is now all the more important to 
understand given recent concerns with research reproducibility and 
researcher incentives (Campbell & Gustafson, 2019; Fraser et al., 2018; 
Gelman & Loken, 2013; Kelly, 2019; Nosek et al., 2012). In some fields, 
such as psychology, the issue is finally being recognized. Williams and 
Albers (2019) conclude that ‘it is currently unclear how [psychology] 
researchers should deal with distributional assumptions’ since ‘diagnos-
ing and responding to distributional assumption problems’ may result in 
‘error rates [that] vary considerably from the nominal error rates’.

In ecology, some have warned about model selection bias (e.g. 
Buckland et al., 1997), but the problem ‘remains widely over- looked’ 
(Whittingham et al., 2006). Indeed, ecologists will readily admit that 
‘this problem is commonly not appreciated in modelling applications’ 
(Whittingham et al., 2005). Anderson (2007) notes that: ‘Model se-
lection bias is subtle but its effects are widespread and little under-
stood by many people working in the life sciences’.

In this paper, we conduct a large- scale simulation study to investi-
gate the potential consequences of model selection bias that can arise 
in the simple scenario of analysing a sample of potentially overdis-
persed, potentially zero- inflated, count data. It is difficult to anticipate 
what these consequences might be. Often, while model selection bias 
is problematic from a theoretical perspective, it does not lead to sub-
stantial problems in practice. We restrict our attention to two model 
selection procedures, one based on conducting score tests, and an-
other based on calculating information criteria. These correspond to 
recommendations recently put forth in Blasco- Moreno et al. (2019).

In Section 2, we review commonly used models and outline the 
framework of a simulation study to investigate the consequences of 
checking for zero- inflation and overdispersion. In Section 3, we discuss 
the results of this simulation study and we conclude in Section 4 with a 
summary of findings and general recommendations.

2  | MATERIAL S AND METHODS

2.1 | Models for the analysis of count data

Let us begin with the simplest version of the Poisson GLM. Let Yi, for 
i in 1, …, n, be the response of interest observed for n independent 
samples. Let Xi, for i in 1, …, n, represent a single covariate of interest. 
If the covariate of interest is categorical with k different categories 
(e.g. k different species of fish), Xi will be a vector with length equal 
to k − 1; otherwise it will be a single scalar (and k = 2). The simplest 
Poisson regression model, with a standard log link, will have:

for i in 1, …, n, where β0 is the intercept, and βX is the coefficient 
(or coefficient- vector of length k − 1) representing the association 

between X and Y. Note that this model assumes that the mean and 
variance are equal: E(Yi) = Var(Yi) = λi, for i in 1, …, n.

Parameter estimates, �̂0, and �̂X, can be obtained by maximum 
likelihood estimation. A confidence interval for βX is typically calcu-
lated by the standard profile likelihood approach where one inverts 
a likelihood- ratio test (LRT); see Venzon and Moolgavkar (1988), or 
more recently Uusipaikka (2008).

To test whether there is an association between Y and X, we 
define the following hypothesis test: H0 : βX = 0 versus H1 : βX ≠ 0. 
A simple LRT, or Wald test will provide a p- value to evaluate this 
hypothesis; see Zeileis et al. (2008). The LRT and Wald test are as-
ymptotically equivalent. For the LRT, the Z- statistic is obtained by 
calculating the null and residual deviance as ZLRT = D1−D0, where:

and:

If the distributional assumptions of a Poisson GLM are met and 
the null hypothesis holds, the Z- statistic will follow (asymptotically) 
a χ2 distribution with df = k − 1 degrees of freedom, and the p- value 
is calculated as: p- value = Pχ2(Z, df = k − 1). (For the Wald test, with 
k = 2, the Z- statistic is defined as ZWald =

(
�̂X∕se

(
�̂X

))2

, where 
se

(
�̂X

)
 is the standard error of the maximum likelihood estimate 

(MLE); see Hilbe and Greene (2007) for details when k > 2).
However, if the distributional assumptions do not hold, the Z- 

statistic will be compared with the wrong reference distribution in-
validating any significance test (and associated confidence intervals). 
Therefore, in order to conduct valid inference, researchers will typ-
ically carry out an extensive model selection procedure. Note that 
model selection must always be based on model residuals and not on 
the distribution of the response variable (which is erroneously done 
on occasion). To be clear, one should not check the distribution of 
the response variable independent of the covariates.

Blasco- Moreno et al. (2019) outline and illustrate a proposed 
model selection protocol based on:

• measuring indices (e.g. the dispersion index (Fisher, 1950); the 
zero- ination index (Puig & Valero, 2006));

• conducting score tests (e.g. the D&L score test for Poisson vs. NB 
regression (Dean & Lawless, 1989): the νdB score test for Poisson 
vs. ZIP regression (Van den Broek, 1995): the score test for ZIP vs. 
ZINB regression (Ridout et al., 2001)); and

• evaluating candidate models with goodness- of- fit tests (e.g. likeli-
hood ratio tests; the Vuong and Clarke tests) and model selection 
criteria (e.g. AIC and BIC).

In this paper, for simplicity, we will only consider three alterna-
tive models in addition to the Poisson model described above: the 

(1)Yi ∼ Poisson
(
�i = exp

(
�0 + �XXi

))
, or equivalently:

(2)Pr
(
Yi = yi|�0, �X

)
=

(
exp

(
�0 + �XXi

))yi exp
(
−exp

(
�0 + �XXi

))

yi !
,

D0 = 2

n∑

i=1

{
Yilog

(
Yi∕exp

(
�̂0

))
−
(
Yi − exp

(
�̂0

))}
,

D1 = 2

n∑

i=1

{
Yilog

(
Yi∕�̂i

)
−
(
Yi − �̂i

)}
, where �̂i = exp

(
�̂0 + �̂XXi

)
.
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(type 2) NB, the ZIP, and the (type 2) ZINB regression models as de-
scribed in Blasco- Moreno et al. (2019). Let us briefly review these 
three alternative regression models.

(1) The ZIP regression model— We will consider the following zero- 
inflated Poisson model where the probability of a structural zero, ωi, 
is a function of the covariate Xi. Specifically,

where we have a log link function for λi and a logit link function for ωi 
(for i in 1, …, n) such that:

The ZIP model has that 0 ≤ ωi ≤ 1 and λi > 0, and implies the following 
about the mean and variance of the data: E(Yi) = λi(1 − ωi) = μi and 
Var

(
Yi
)
= �i + �2

i
�i∕

(
1 − �i

)
. The dispersion index is therefore equal 

to d = Var(Yi)/E(Yi) = 1 + λiωi. As ωi → 0, we have that Yi reverts to 
follow a Poisson distribution with mean λi. A null hypothesis of no as-
sociation between X and Y is specified as: H0 : βX = γX = 0.

(2) The (type 2) NB regression model— We will consider the follow-
ing NB regression model:

where we use a log link function for λi = exp(β0 + βXXi), and where 
ν > 0 is a dispersion parameter that does not depend on covariates. 
The type 2 NB model assumes the following about the mean and 
variance of the data: E(Yi) = λi, and Var

(
Yi
)
= �i + �2

i
∕�. The disper-

sion index is therefore equal to d = Var(Yi)/E(Yi) = 1 + λi/ν. As ν → ∞, 
we have that Yi reverts to follow a Poisson distribution with mean λi. 
A null hypothesis of no association between X and Y is specified as: 
H0 : βX = 0.

(3) The (type 2) ZINB regression model— We will consider the fol-
lowing ZINB regression model:

where we use a log link function for λi and a logit link function for ωi 
as described in Equations 4 and 5; and where ν > 0 is a dispersion pa-
rameter that does not depend on covariates. The type 2 ZINB model 
assumes the following about the mean and variance of the data: 
E(Yi) = λi(1 − ωi), and Var

(
Yi
)
=
(
1 − �i

) (
�i + �2

i

(
�i + 1∕�

))
. The dis-

persion index is therefore equal to d = Var(Yi)/E(Yi) = 1 + λi(ωi + 1/ν). 
A null hypothesis of no association between X and Y is specified as: 
H0 : βX = γX = 0.

2.2 | Simulation study

As discussed in the previous section, prevailing practice for the anal-
ysis of count data is first to try to fit one's data with a Poisson GLM 
and only consider alternatives in the event that a preliminary test 
indicates that the distributional assumptions of a Poisson GLM may 
be violated. We will therefore consider the following multi- stage 
testing procedure in our simulation study investigation. This follows 
the recommendations of Blasco- Moreno et al. (2019) yet repre-
sents a simplication of the typical process followed by researchers. 
(Walters (2007) also recommends a similar multi- step model selec-
tion procedure.)

For the illustrative purposes of this paper, we consider the Dean 
and Lawless (1989) score test (D&L test) for oversdispersion and the 
Vuong (1989) test for zero- inflation (see Appendix S1 for details) in 
the following seven step procedure: 

Step 1. Conduct the D&L score test for overdispersion (H0: 
Poisson vs. H1: NB).

Step 2. If the D&L score test fails to reject the null, con-
duct a Vuong test for zero- inflation (H0: Poisson vs. H1: ZIP). 
Otherwise, proceed to Step 5.

Step 3. If the Vuong test for zero- inflation fails to reject the 
null, fit a Poisson GLM and calculate the p- value (H0 : βX = 0 
vs. H1 : βX ≠ 0). Otherwise, proceed to Step 4.
Step 4. If the Vuong test for zero- inflation rejects the null, 
fit the ZIP model and calculate the p- value (H0 : βX = γX = 0).

Step 5. If the D&L score test rejects the null, conduct the 
Vuong test for zero- inflation (H0: NB vs. H1: ZINB).

Step 6. If the Vuong test for zero- inflation fails to re-
ject the null, fit the NB model and calculate the p- value 
(H0 : βX = 0). Otherwise, proceed to Step 7.
Step 7. If the Vuong test for zero- inflation rejects the null, 
fit the ZINB regression model and calculate the p- value 
(H0 : βX = γX = 0).

Figure 1 illustrates the multi- stage model selection procedure 
with a Poisson GLM as the starting point. Note that, in their ex-
ample analysis of plant– herbivore interaction data, Blasco- Moreno 
et al. (2019) conduct a version of the above procedure. First, based 
on the D&L score test, they conclude: ‘the data are clearly overdis-
persed and a NB model was preferred to a Poisson’. The authors 
also conduct Vuong and Clarke tests: ‘The Vuong and Clarke tests 
rejected the Poisson and NB models in favour of their zero- inflated 
versions[…]’. We decided to consider the Vuong test in our simula-
tions instead of the Clarke test (or the Ridout score test), since the 
Vuong test appears to be the most widely used in practice. We also 
investigate two other, simpler, model selection strategies: (a) among 
the four models considered, the model with lowest AIC is chosen; 
(b) among the four models considered, the model with lowest BIC is 
chosen (Burnham & Anderson, 2004). And we also briefly consider a 
third alternative: among the four models considered, the model with 
lowest AICc is chosen (Hurvich & Tsai, 1989). Different information 

(3)

Pr(Yi=yi|𝜔i, 𝜆i) =𝜔i+
(
1−𝜔i

)
exp

(
−𝜆i

)
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=
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)
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)
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(
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criteria are known to have different properties. For instance, AIC is 
optimal for reducing predictive error, whereas the BIC is consistent; 
see Yang (2005).

We conducted a large- scale simulation study in which samples of 
data were drawn from four different distributions (see R code in the 
Appendix S1 for exactly how the data simulation is done):

1. the Poisson distribution: 

2. the (type 2) negative binomial distribution: 

3. the zero- inflated Poisson distribution: 

4. the zero- inflated negative binomial distribution: 

For each scenario, all data are simulated under the null hy-
pothesis (i.e. with βX = 0 and γX = 0). We varied the following: the 
sample size, n = (50, 100, 250, 500, 1,000, 2,000, 5,000, 10,000), 
the intercept, β0 = (0.5, 1.0, 1.5, 2.0, 2.5), and the probability of 
a structural zero, ω = (0, 0.05, 0.1, 0.2, 0.5). We also varied the 
degree of overdispersion by setting ϕ = ν/λ = (∞, 2, 1, 1/2, 1/3) (so 
that data simulated from the negative binomial distribution has a 

dispersion index of d = 1 + λ/ν = 1 + 1/ϕ = (1.0, 1.5, 2.0, 3.0, 4.0) ).  
To be clear, we consider:

• scenarios with ϕ = ∞ and ω = 0 as those with data simulated from 
the Poisson distribution;

• scenarios with ϕ < ∞ and ω = 0 as those with data simulated from 
the negative binomial distribution;

• scenarios with ϕ = ∞ and ω > 0 as those with data simulated from 
the zero- inflated Poisson distribution; and

• scenarios with ϕ < ∞ and ω > 0 as those with data simulated from 
the zero- inflated negative binomial distribution.

We simulated Xi as a univariate continuous covariate from 
a Normal distribution, with mean of zero and variance of 100: 
Xi ~ Normal(0, 100), for i in 1, …, n (as such, k = 2). Note that the co-
variate matrix X is simulated anew for each individual simulation run. 
Therefore, we are considering the case of random regressors. Chen 
and Giles (2011) discuss the difference between fixed and random 
covariates. The assumption of fixed covariates is generally consid-
ered only in experimental settings whereas an assumption of random 
covariates is typically more appropriate for observational studies.

Note that, for Poisson distributed data, we are simulating 
data with overall mean of λ = exp(β0) ≈ (1.6, 2.7, 4.5, 7.4, 12.2). 

yi ∼ Poisson
(
� = exp

(
�0

))
, for i in 1,…, n ;

yi ∼ NegBin
(
�, � = exp

(
�0

))
, for i in 1,…, n ;

yi ∼ ZIPoisson
(
�, � = exp

(
�0

))
, for i in 1,…, n ; and

yi ∼ ZINegBin
(
�, �, � = exp

(
�0

))
, for i in 1,…, n.

F I G U R E  1   The multi- stage model selection procedure. A Poisson GLM is the starting point. Three score tests lead to one of four 
models. Numbers in the top right- hand corner of each node indicate the expected number of datasets (out of a total of 100) to reach each 
outcome if the data were Poisson (with βX = 0), and each of the tests were truly independent (with a α = 0.05 false positive rate). Numbers 
in parentheses correspond to results from the simulation study (Scenario ‘3’, with ϕ = ∞, ω = 0, β0 = 0.5 and n = 250). Numbers in (curved) 
parentheses are those obtained in following the seven- step procedure; numbers in [square] parentheses are those obtained via AIC; 
numbers in {curly} parentheses are those obtained via BIC. The unconditional type 1 error rate obtained in the simulation study following 
the seven- step procedure is 5.08% (=4.83 + 0.10 + 0.14 + 0.01). The unconditional type 1 error rate obtained by the simulation study when 
selecting the best model via AIC is 6.23% (=4.12 + 1.91 + 0.17 + 0.02). (Not plotted, but for reference: the unconditional type 1 error rate 
obtained by the simulation study when selecting the best model via AICc is 6.21% (=4.21 + 1.83 + 0.16 + 0.01)) The unconditional type 1 
error rate obtained the simulation study when selecting the best model via BIC is 5.31% (=5.15 + 0.15 + 0.01 + 0.00)
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For λ > 5, zeros in the data are quite rare since Pr(Y = 0|λ) ≈ 0. 
The simulation study could be expanded in several ways. For 
instance, we did not consider models that deal with under- 
dispersion, even though under- dispersed counts may arise in 
various ecological studies; see Lynch et al. (2014). Also note that 
the simulation study only tests for rates of false positives (since 
βX = 0 and γX = 0 for all scenarios). We are not testing for exces-
sive false negatives (and overly wide confidence intervals) which 
are also undesirable.

In total, we considered 1,000 distinct scenarios and for each sim-
ulated 15,000 unique datasets. For each dataset, we conducted the 
seven- step procedure and recorded all p- values and whether or not 
the null hypotheses is rejected at the 0.05 significance level under 
the entire procedure. We also recorded all AIC, AICc and BIC statis-
tics. We are interested in the unconditional false positive rate (i.e. 
the unconditional type 1 error rate).

We specifically chose to conduct 15,000 simulation runs so as to 
keep computing time within a reasonable limit while also reducing 
the amount of Monte Carlo standard error to a negligible amount 
(for looking at a false positive rate of α = 0.05, Monte Carlo SE will 
be approximately 0.0018 ≈

√
0.05 (1 − 0.05) ∕15, 000; see Morris 

et al., 2019). We ran all simulations using R on parallel nodes of the 
Compute Canada cluster; see Baldwin (2012).

To test the association between X and Y with each of the regres-
sion models, we conducted a Wald test (using the Chi- square statistic) 
to obtain the necessary p- value since in R, the p- values in the default 
summary.glm output are from Wald tests (using the Chi- square sta-
tistic). Moreover, in initial simulations, LRTs performed rather errati-
cally in rare situations when the model was misspecified (e.g. when a 
Poisson model was fit to ZIP data). The glm function (‘stats’ package) 
was used to fit Poisson GLMs; the glm.nb function (‘MASS’ package) 
was used to fit the NB GLMs; and the zeroinfl function (‘pscl’ package) 
was used to fit the ZIP and ZINB GLMs; see R- code in Appendix S1.

3  | DISCUSSION

Analysis under the ‘correct model’— We first wish to confirm that 
the models under investigation deliver correct type 1 error when 
used as intended. In other words, suppose the ‘correct model’ is 
known a priori and is used regardless of any preliminary diagnostic 
testing, would we obtain the desired number of false positives? 
See Figure 2 which plots the rejection rates corresponding to this 
question.

In summary, we see that for data simulated from a Poisson 
distribution (Figure 2, panel 1), empirical type 1 error is indeed 

F I G U R E  2   The empirical level of type 1 error (for testing the association between X and Y) obtained under the ‘correct’ model. For panel 
1, the ‘correct’ model is a Poisson GLM; for panels 2– 5 the ‘correct’ model is the NB GLM; for panels 6, 11, 16 and 21, the ‘correct’ model is 
the ZIP GLM; and for other panels, the ‘correct’ model is the ZINB GLM

5

4

3

2

1

10

9

8

7

6

15

14

13

12

11

20

19

18

17

16

25

24

23

22

21

ω = 0 ω = 0.05 ω = 0.1 ω = 0.2 ω = 0.5

φ
 = 1/3

φ = 1/2
φ = 1

φ = 2
φ = Inf

0 250 1,000 10,000 0 250 1,000 10,000 0 250 1,000 10,000 0 250 1,000 10,000 0 250 1,000 10,000

0
0.025
0.050
0.075

0
0.025
0.050
0.075

0
0.025
0.050
0.075

0
0.025
0.050
0.075

0
0.025
0.050
0.075

→ Direction of increasing zero-inflation →

Sample size (n)

P
ro

ba
bi

lit
y 

of
 p

α
←

D
irection of increasing overdispersion←

Intercept parameter (β0) : 0.5 1 1.5 2 2.5

Type 1 error obtained with correct model



     |  7Methods in Ecology and Evolu
onCAMPBELL

approximately 0.05 as desired. We also note that for data simu-
lated from the NB distribution (Figure 2, panels 2– 5), empirical type 
1 error is approximately 0.05 for all n ≥ 250 and for all values of the 
intercept parameter (β0). For data simulated from the ZIP distribu-
tion (see Figure 2, panels 6, 11, 16 and 21), empirical type 1 error 
can be substantially conservative (i.e. <0.05) for small sample sizes 
and when the probability of structural zeros is low (i.e. for small val-
ues of n and small values of ω). Finally, for ZINB data, we note that, 
when n is small, the false positive rate is higher than the advertised 
rate of 0.05 for some scenarios and less than 0.05 for others. For 
example, with n = 100, β0 = 0.5, ϕ = 1/3, and ω = 0.5, the false 
positive rate is 0.07, whereas, when n = 100, β0 = 2.5, ϕ = 2, and 
ω = 0.05, the type 1 error is 0.04 (see Figure 2, panels 25 and 7 
respectively).

None of the models appear to be ‘robust’ to model misspecifica-
tion. A Poisson model applied to non- Poisson data leads to very high 
rejection rates (so high they are often off the charts in Appendix 
S1— Figure 19). A ZIP model also performs poorly when applied to 
non- ZIP data (see Appendix S1— Figure 20), as does the NB model 
when applied to non- NB data (see Appendix S1— Figure 21), and the 
ZINB model (see Appendix S1— Figure 22) when applied to non- ZINB 
data (specifically when applied to Poisson data and NB data).

More specifically, it seems inadvisable to recommend simply 
fitting a ZIP or ZINB to Poisson data if one is uncertain about the 
possibility of zero- inflation, or overdispersion. As the sample size, 
n, increases (and as β0 decreases), the type 1 error rates obtained 
when the ZIP and ZINB models are fit to Poisson data increase 
well beyond 0.05 (see Appendix S1— Figures 20 and 22, panel 1). 
This unexpected result may be due to the fact that these mod-
els are testing a null hypothesis that lies on the boundary of the 
parameter space (i.e. ω = 0); see Feng and McCulloch (1992). In 
contrast, the NB model, when fit to Poisson data, maintains cor-
rect type 1 error for both small and large sample sizes. However, 
when fit to ZIP or ZINB data, the NB model results in either far too 
few or far too many false positives (depending on n and β0); see 
Appendix S1— Figure 21.

Preliminary testing— The next question is: how often do the 
preliminary tests reject their null hypotheses? We also wish to de-
termine how often the preliminary testing scheme successfully iden-
tifies the ‘correct’ model.

Let us first consider the D&L score test (see Appendix 
S1— Figure 16) and specifically as it applies to the NB scenarios. 
Recall that the NB scenarios are those with overdispersion (ϕ < ∞) 
but no structural zero- inflation (ω = 0). With the exception of the 
small sample- size scenarios with a small amount of overdispersion 
(n ≤ 100, ϕ ≤ 2), the D&L test correctly rejects the null hypothe-
sis of no overdispersion for the vast majority of cases (Appendix 
S1— Figure 16, panels 2– 5). For Poisson data (when ϕ = ∞ and ω = 0), 
the D&L test shows approximately correct type 1 error, with rejec-
tion rates ranging from 0.039 to 0.056 (see Appendix S1— Figure 16, 
panel 1). However, for ZIP data (when ϕ = ∞ and ω > 0), the D&L 
test will often reject the null hypothesis of no overdispersion; see 
Appendix S1— Figure 16, panels 6, 11, 16 and 21. The rate of rejection 

increases with increasing sample size, with increasing ω, and with 
increasing β0. Strictly speaking, rejection in these cases is correct 
since an excess of zeros (ω > 0) does contribute to overdispersion. 
However, it must be noted that using the NB model for overdisper-
sion when the underlying issue is zero- inflation is not appropriate; 
see Harrison (2014). Indeed, when the NB model is fit to ZIP data, 
we record type 1 error rates either much too low or much too high, 
depending on ω, β0, and n; see Appendix S1— Figure 21, panels 6, 11, 
16 and 21.

Now let us consider the Vuong test for zero- inflation. See 
Appendix S1— Figures 17 and 18 for the Vuong test results. Note 
that the ‘Poisson versus ZIP’ Vuong test will often reject the null of 
no zero- inflation for NB data (Appendix S1— Figure 17, panels 2– 5). 
In contrast, the ‘NB versus ZINB’ Vuong test will rarely reject the null 
of no zero- inflation for NB data (Appendix S1— Figure 18, panels 2– 
5). In this way, the Vuong test acts as a second- line defense against 
erroneously selecting a Poisson model. If the D&L score test fails to 
select the NB model in Step 1, the ‘Poisson versus ZIP’ Vuong test in 
Step 3 will often reject a Poisson model in favour of the ZIP model 
(particularly when n and β0 are large). The ZIP model, when used for 
NB, is not ideal, but is definitely preferable to a Poisson model; com-
pare Appendix S1— Figures 19 and 20, panels 2– 5.

Overall, the probability that the preliminary seven- step testing 
scheme selects the ‘correct’ model depends highly on β0, ω, ϕ and n, 
see Figure 3. With Poisson data, if each of the diagnostic tests were 
truly independent (and each had a α = 0.05 type 1 error rate), then 
the probability of selecting the ‘correct’ model should be 90.25% 
(=0.95 ×95%); see Figure 1. The numbers we obtain from the simu-
lation study range from 87% to 96%.

For the ZIP data scenarios, the ‘incorrect’ ZINB model is chosen 
in a majority of cases (ω > 0, ϕ = ∞; Figure 3, panels 6, 11, 16 and 
21). This may not necessarily lead to type 1 error inflation since the 
‘incorrect’ ZINB model is often conservative when applied to ZIP 
data; see Appendix S1— Figure 22. For ZINB data scenarios (i.e. when 
ω > 0, ϕ < ∞), in cases when the ZINB model is not selected, it is 
most likely that the NB model is selected instead. This also might 
not necessarily lead to type 1 error inflation since the misspecified 
NB model appears to maintain a type 1 error rate at or bellow the 
advertised rate in many of these situations (specifically when ϕ < 2 
and ω < 0.2); see Appendix S1— Figure 21.

Post- score- testing unconditional type 1 error— Our main question 
of interest is whether or not the null hypotheses of no associa-
tion between X and Y is rejected at the desired 0.05 significance 
level when following the entire seven- step procedure outlined 
in Section 2.2. The corresponding rejection rates are plotted in 
Figure 4. Table 1 lists rejection rates and model selection rates for 
a select number of scenarios. Let us consider the results for each 
distribution.

First, for data simulated from the Poisson distribution (Figure 4, 
panel 1), empirical type 1 error appears to be unaffected by model 
selection bias. This is due to the fact that incorrect models are rarely 
selected, even when sample sizes are small (see Figure 3, panel 1). 
Consider two specific scenarios:
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F I G U R E  3   The probability of selecting the ‘correct model’ after following the seven step testing scheme outlined in Section 2.2. For 
panel 1, the ‘correct’ model is a Poisson GLM; for panels 2– 5 the ‘correct’ model is the NB GLM; for panels 6, 11, 16 and 21, the ‘correct’ 
model is the ZIP GLM; and for other panels, the ‘correct’ model is the ZINB GLM
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F I G U R E  4   Type 1 error (for testing the association between X and Y) obtained following the seven step testing scheme outlined in 
Section 2.2. For panel 1, the ‘correct’ model is a Poisson GLM; for panels 2– 5 the ‘correct’ model is the NB GLM; for panels 6, 11, 16 and 21, 
the ‘correct’ model is the ZIP GLM; and for other panels, the ‘correct’ model is the ZINB GLM
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• Scenario ‘3’ (n = 250, β0 = 0.5, ϕ = ∞, and ω = 0)— When β0 = 0.5 
and n = 250, a Poisson model is correctly selected in approxi-
mately 93% of cases while the NB and ZIP models are selected 
in about 4% and 3% of cases, respectively. Numbers in the top 
right- hand corner of each node in Figure 1 indicate the expected 
number of datasets (out of a total of 100) to reach each outcome 
if the data were Poisson (with βX = 0), and each of the tests were 
truly independent (with a α = 0.05 type 1 error rate). The numbers 
in parentheses correspond to results from the simulation study 
for this scenario.

TA B L E  1   Rejection rates and model selection rates for 
a number of selected scenarios from the simulation study; 
see coressponding Figures 9– 13 in the Appendix S1. These 
numbers can be used to calculate the overall unconditional 
type 1 error rates. For example, for Scenario ‘402’, the type 
1 error obtained after model selection via AIC is 0.070 
(=0.07 × 0.51 + 0.09 × 0.32 + 0.03 × 0.16 + 0.08 × 0.01); the 
type 1 error obtained after model selection via BIC is 0.073 
(=0.07 × 0.84 + 0.20 × 0.06 + 0.02 × 0.10 + 0.20 × 0.00); 
and the type 1 error obtained after model 
selection via sequential score tests is 0.063 
(=0.07 × 0.71 + 0.14 × 0.02 + 0.03 × 0.24 + 0.13 × 0.02)

Poisson 
GLM

ZIP 
GLM

NB 
GLM

ZINB 
GLM

Scenario ‘3’
(n = 250, β0 = 0.5, ϕ = ∞, ω = 0; Poisson)

Pr(reject H0) 0.05 0.04 0.05 0.04

Pr(reject H0|M 
selected by tests)

0.05 0.04 0.03 0.09

Pr(M selected by 
tests)

0.93 0.03 0.04 0.00

Pr(reject H0|M has 
lowest AIC)

0.05 0.17 0.04 0.06

Pr(M has lowest AIC) 0.84 0.11 0.05 0.00

Pr(reject H0|M has 
lowest BIC)

0.05 0.34 0.01 — 

Pr(M has lowest BIC) 0.99 0.00 0.01 0.00

Scenario ‘6’
(n = 2,000, β0 = 0.5, ϕ = ∞, ω = 0; Poisson)

Pr(reject H0) 0.05 0.07 0.05 0.07

Pr(reject H0|M 
selected by tests)

0.05 0.07 0.05 0.23

Pr(M selected by 
tests)

0.93 0.02 0.05 0.00

Pr(reject H0|M has 
lowest AIC)

0.05 0.31 0.04 0.16

Pr(M has lowest AIC) 0.84 0.10 0.06 0.00

Pr(reject H0|M has 
lowest BIC)

0.05 0.80 0.02 — 

Pr(M has lowest BIC) 1.00 0.00 0.00 0.00

Scenario ‘46’
(n = 2,000, β0 = 0.5, ϕ = 2, ω = 0; NB)

Pr(reject H0) 0.11 0.08 0.05 0.07

Pr(reject H0|M 
selected by tests)

— — 0.05 0.17

Pr(M selected by 
tests)

0.00 0.00 0.99 0.01

Pr(reject H0|M has 
lowest AIC)

— — 0.05 0.25

Pr(M has lowest AIC) 0.00 0.00 0.87 0.13

Pr(reject H0|M has 
lowest BIC)

— — 0.05 0.17

Pr(M has lowest  
BIC)

0.00 0.00 1.00 0.00

(Continues)

Poisson 
GLM

ZIP 
GLM

NB 
GLM

ZINB 
GLM

Scenario ‘57’
(n = 50, β0 = 1.5, ϕ = 2, ω = 0; NB)

Pr(reject H0) 0.11 0.04 0.06 0.02

Pr(reject H0|M 
selected by tests)

0.11 0.00 0.05 0.11

Pr(M selected by 
tests)

0.39 0.00 0.61 0.00

Pr(reject H0|M has 
lowest AIC)

0.11 0.09 0.05 0.03

Pr(M has lowest AIC) 0.32 0.08 0.56 0.04

Pr(reject H0|M has 
lowest BIC)

0.12 0.09 0.04 0.10

Pr(M has lowest BIC) 0.53 0.03 0.43 0.00

Scenario ‘251’
(n = 250, β0 = 1, ϕ = 2, ω = 0.05; ZINB)

Pr(reject H0) 0.12 0.08 0.05 0.04

Pr(reject H0|M 
selected by tests)

0.00 — 0.05 0.13

Pr(M selected by 
tests)

0.00 0.00 0.95 0.05

Pr(reject H0|M has 
lowest AIC)

0.00 0.09 0.05 0.08

Pr(M has lowest AIC) 0.00 0.04 0.63 0.33

Pr(reject H0|M has 
lowest BIC)

0.00 0.14 0.05 0.23

Pr(M has lowest BIC) 0.00 0.05 0.93 0.01

Scenario ‘402’
(n = 100, β0 = 0.5, ϕ = ∞, ω = 0.1; ZIP)

Pr(reject H0) 0.07 0.05 0.05 0.04

Pr(reject H0|M 
selected by tests)

0.07 0.14 0.03 0.12

Pr(M selected by 
tests)

0.71 0.02 0.24 0.02

Pr(reject H0|M has 
lowest AIC)

0.07 0.09 0.03 0.08

Pr(M has lowest AIC) 0.51 0.32 0.16 0.01

Pr(reject H0|M has 
lowest BIC)

0.07 0.20 0.02 0.20

Pr(M has lowest BIC) 0.84 0.06 0.10 0.00

TA B L E  1   (Continued)
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• Scenario ‘6’ (n = 2,000, β0 = 0.5, ϕ = ∞, and ω = 0)— When β0 = 0.5 
and n = 2,000, a Poisson model is correctly selected in approxi-
mately 93% of cases while the NB and ZIP models are selected 
in about 5% and 2% of cases, respectively. While the NB model 
is perhaps conservative for this data (Pr(reject H0|NB model se-
lected by tests) = 0.049), the ZIP model is not (Pr(reject H0|ZIP 
model selected by tests) = 0.070). However, the impact is negligi-
ble: the unconditional type 1 error rate obtained after following 
the seven- step procedure is 0.051.

Second, for data simulated from the ZIP distribution (i.e. when 
ω > 0 and ϕ = ∞), the ‘incorrect’ ZINB model is almost always se-
lected due to the fact that the model selection procedure tests for 
zero- inflation only after first testing for overdispersion. However, 
the type 1 error under this ‘incorrect’ ZINB model is, for most sce-
narios, not substantially higher than the advertised 0.05 rate, (see 
Appendix S1— Figure 22, panels 6, 11, 16 and 21). There are, however, 
exceptions where model selection bias is apparent. Consider, for ex-
ample, scenario ‘402’:

• Scenario ‘402’ (n = 100, β0 = 0.5, ϕ = ∞ and ω = 0.1)— The uncondi-
tional type 1 error obtained after following the seven- step proce-
dure is 0.063 (see Figure 4, panel 11). Among the simulated datasets 
for which the ZIP model is selected (by the D&L and Vuong tests), 
the ZIP model has a rejection rate of 0.14. Among the simulated 
datasets for which the ZINB model is selected, the ZINB model has 
a rejection rate of 0.12; see Table 1. This clearly shows that the diag-
nostic tests (the D&L and Vuong tests) and the subsequent hypoth-
esis tests (H0 : βX = γX = 0) are not independent of one another. In 
this instance, the D&L test will not only screen for overdispersion, 
but will also direct the data towards a model that is more likely to 
reject H0 : βX = γX = 0, thereby inflating the type 1 error.

With data simulated from the NB distribution (i.e. when ϕ < ∞ 
and ω = 0; see Figure 4, panels 2– 5), we see that model selection bias 
can lead to modest type 1 error inflation when n is small. When sam-
ple sizes are sufficiently large, there is little evidence of any substan-
tial type 1 error inflation caused by model selection bias. Consider 
for example ‘Scenario 57’:

• Scenario ‘57’ (n = 50, β0 = 1.5, ϕ = 2 and ω = 0)— The unconditional 
type 1 error obtained after following the seven- step procedure is 
0.072 (see Figure 4, panel 2), whereas the type 1 error obtained 
with the ‘correct’ NB model is 0.063. This inflation is due to the fact 
that, for these data, there is a 39% probability of selecting a Poisson 
model following the seven- step procedure and that Pr(reject 
H0|Poisson model is selected by tests) = 0.114; see Table 1.

Finally, consider data simulated from the ZINB distribution (i.e. 
when ϕ < ∞ and ω > 0; see Figure 4, panels 7– 10, 12– 15, 17– 20 
and 22– 25). We see type 1 error rates higher than 0.05 for small 
sample- size scenarios, but rates of approximately 0.05 otherwise. 
For example, consider scenario ‘251’:

• Scenario ‘251’ (n = 250, β0 = 1.0, ϕ = 2 and ω = 0.05)— The un-
conditional type 1 error obtained after following the seven step 
procedure is 0.053 (see Figure 4, panel 7). The seven- step pro-
cedure correctly selects the ZINB GLM with a probability of 
only 4.6%. However, among the 95.4% of simulated datasets for 
which the NB model is incorrectly selected, the null hypothesis 
(H0 : βX = γX = 0) is rejected with probability of 0.048.

AIC, AICc and BIC model selection— We also investigated model se-
lection using information criteria metrics. We were particularly curious 
as to how often the ‘correct’ model is the model with the lowest AIC/
BIC; Figures 5 and 6 plot the results. The results for AICc are almost 
identical to those obtained for AIC; see Figure 14 in the Appendix S1.

We see that the probability that AIC selects the ‘correct’ model 
depends highly on β0, ω, ϕ and n. Perhaps unexpectedly, we see that 
this probability does not necessarily increase with increasing sample 
size for certain scenarios. (The same is observed for AICc.) In con-
trast, the probability that the BIC selects the ‘correct’ model does 
increase with increasing sample size. Overall, averaging across all 
1,000 scenarios we considered, AIC selected the correct model for 
82% of datasets, AICc selected the correct model for 81% of data-
sets, the BIC selected the correct model for 73% of datasets, and the 
seven- step model selection procedure based on score tests selected 
the correct model for 63% of datasets.

We also wish to determine whether or not the null hypotheses of 
no association between X and Y is rejected at the 0.05 significance 
level when following model selection via AIC/AICc/BIC. Figure 7 
shows that, when β0 is small, there are several scenarios in which 
the post- AIC unconditional type 1 error is much higher than 0.05. 
(The same is observed with AICc, see Figure 15 in the Appendix S1.) 
Perhaps most surprisingly, we see that, with Poisson data (i.e. scenar-
ios with ω = 0 and ϕ = ∞), the post- AIC (post- AICc) unconditional type 
1 error increases with increasing sample size (e.g. with β0 = 0.5, the 
post- AIC (post- AICc) unconditional type 1 error increases from 0.050 
to 0.085 (from 0.501 to 0.085) as n increases from 50 to 10,000; see 
Figure 7 (see Appendix S1— Figure 15), panel 1). This does not appear 
to be an issue for the BIC (Figure 8).

Consider again Scenario ‘3’ (n = 250, β0 = 0.5, ϕ = ∞, and ω = 0) 
and Scenario ‘6’ (n = 2,000, β0 = 0.5, ϕ = ∞ and ω = 0); see Table 1:

• For Scenario ‘3’, the probability that AIC correctly selects the 
Poisson GLM is high at 84%. However, there is a 11% probability 
that the ZIP GLM is selected and Pr(reject H0|ZIP GLM has low-
est AIC) = 0.17. This drives the unconditional type 1 error rate to 
0.062 (=0.05 × 0.84 + 0.17 × 0.11 + 0.04 × 0.05 + 0.06 × 0.00). 
(The unconditional type 1 error rate obtained with the AICc is also 
0.062). The BIC correctly selects the Poisson GLM with probabil-
ity of 99%. While we have that Pr(reject H0|ZIP GLM has lowest 
BIC) = 0.50, there is a less than 1% probability that the ZIP GLM 
is selected. As such, the post- BIC unconditional type 1 error rate 
remains low at 0.053 (=0.05 × 0.99 + 0.34 × 0.00 + 0.01 × 0.01).

• For Scenario ‘6’, the probability that AIC incorrectly selects the 
ZIP GLM is 0.10, and Pr(reject H0|ZIP GLM has lowest AIC) = 0.31. 
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F I G U R E  5   The probability that the ‘correct’ model is the one with the lowest AIC. For panel 1, the ‘correct’ model is a Poisson GLM; 
for panels 2– 5 the ‘correct’ model is the NB GLM; for panels 6, 11, 16 and 21, the ‘correct’ model is the ZIP GLM; and for other panels, the 
‘correct’ model is the ZINB GLM
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F I G U R E  7   Type 1 error (for testing the association between X and Y) obtained from model with the lowest AIC. For panel 1, the ‘correct’ 
model is a Poisson GLM; for panels 2– 5 the ‘correct’ model is the NB GLM; for panels 6, 11, 16 and 21, the ‘correct’ model is the ZIP GLM; 
and for other panels, the ‘correct’ model is the ZINB GLM
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As such, the post- AIC unconditional type 1 error rate = 0.077 (=0.
05 × 0.84 + 0.31 × 0.10 + 0.04 × 0.06 + 0.16 × 0.00). (The uncon-
ditional type 1 error rate obtained with the AICc is also 0.077). In 
contrast, the probability that the BIC correctly selects the Poisson 
GLM is more than 99% and the post- BIC unconditional type  
1 error rate = 0.051.

With NB data (i.e. scenarios with ω = 0 and ϕ < ∞), unconditional 
type 1 error rates can also be much higher than 0.05, even when n 
and β0 are large. This is due to the fact that the ZINB model, when 
erroneously selected in a minority of cases, rejects the null of no 
association between X and Y at rates much much higher than 0.05 
(particularly when n is large). Consider for example, Scenario ‘46’:

• Scenario ‘46’ (n = 2,000, β0 = 0.5, ϕ = 2 and ω = 0)— Among the 
87% of datasets for which AIC correctly selects the NB model, the 
null hypothesis of no association between X and Y is rejected with 
probability of exactly 0.050; see Table 1. However, among the re-
maining 13% of datasets for which the ZINB model is erroneously 
selected, the probability of rejecting the null hypothesis of no as-
sociation between X and Y is 0.25. As a result the post- AIC uncon-
ditional type 1 error rate is 0.077 (=0.25 × 0.13 + 0.05 × 0.87). 
(The unconditional type 1 error rate obtained with the AICc is also 
0.077). In contrast, the BIC correctly selects the NB model with 
probability of more than 99% and the post- BIC unconditional type 
1 error rate = 0.052.

With ZIP and ZINB data, the BIC is often less capable of selecting 
the ‘correct’ model relative to the AIC and AICc. However, the BIC 
is still often preferable to the AIC and AICc in terms of maintaining 
the desired unconditional type 1 error rate. Consider for example 
Scenario ‘251’ (n = 250, β0 = 1.0, ϕ = 2 and ω = 0.05); see Table 1:

• For Scenario ‘251’, the probability that AIC (AICc) correctly se-
lects the ZINB GLM is 32% (31%) and the probability that the 
ZINB GLM will reject the null (βX = γX = 0) for these data is 0.043. 
However, these are not independent events. Indeed, we have 
Pr(reject H0|ZINB GLM has lowest AIC) = 0.079 which increases 
the unconditional type 1 error rate to 0.059. (The post- AICc un-
conditional type 1 error rate is also 0.059). The BIC correctly 
selects the ZINB GLM with probability of only 1%. With a prob-
ability of 93%, the NB GLM is selected instead. However, since 
Pr(reject H0|NB GLM has lowest BIC) = 0.05, the post- BIC uncon-
ditional type 1 error rate remains relatively low at only 0.055. We 
can compare this to the unconditional type 1 error rate obtained 
following the seven- step score testing procedure of 0.053.

In summary, while AIC (or AICc) is often able to select the ‘cor-
rect’ model more frequently than the BIC or the sequential score 
testing scheme, there may be a greater potential for type 1 error 
inflation. Indeed, averaging across all 1,000 unique scenarios consid-
ered, the post- AIC unconditional type 1 error obtained is 0.055 (the 
post- AICc unconditional type 1 error obtained is 0.056), whereas 

the post- BIC unconditional type 1 error obtained is 0.053, and the 
post- score testing unconditional type 1 error obtained is 0.051; see 
Table 2. How can this be?

In the presence of model selection bias, selecting the ‘correct’ 
model more often is, somewhat paradoxically, not necessarily pref-
erable. This is due to the fact that the model selection procedure 
based on AIC/AICc/BIC and the hypothesis test for the association 
between X and Y are clearly not independent. The seven- step test-
ing scheme comes out more favourably in our simulation study for 
the simple reason that, in the first step, the test for overdispersion 
often leads one to select the relatively robust (yet not necessarily 
correct) NB model. One might therefore reasonably conclude that 
the seven- step procedure gives better results, but for the wrong 
reasons.

4  | CONCLUSIONS

‘Model misspecification is a major, if not the dominant, source of error 
in the quantification of most scientific evidence’, writes Taper (2004). 
With this in mind, it is no surprise that researchers are repeatedly ad-
vised to do whatever is necessary so as to avoid fitting their data with a 
misspecified model. However, post hoc model selection can come with 
unintended consequences. Indeed, researchers, in their sincere efforts 
to select the ‘best model’, should not forget the potential for the col-
lateral damage that is model selection bias.

If the population distribution is known in advance, model selec-
tion bias will not be a problem. If the assumptions required of the 
Poisson distribution are known to be wrong, alternative models that 
do not depend on these assumptions can be used and ideally a valid 
model can be pre- specified prior to obtaining/observing any data. 
However, outside of a highly controlled laboratory experiment, this 
may not be realistic. The potentially problematic (and most likely 
scenario) is when one cannot, with a high degree of confidence, 
determine the distributional nature of the data before observing 
the data. What should be done in these circumstances? Tsou (2006) 
suggest using a ‘robust’ Poisson regression model ‘so that one 
need not worry about the correctness of the Poisson assumption’. 
However, when the distributional assumptions of a Poisson GLM do 
hold, Tsou (2006) acknowledge that the ‘robust approach might not 
be as efficient’. Given the potentially immense expense required to 
obtain data, anyone working in data- driven research will no doubt 

TA B L E  2   For each of the four different model selection 
schemes, the unconditional type 1 error and the probability 
of selecting the correct model are averaged across all 1,000 
simulation scenarios

Type 1 error
Prob. of selecting 
the correct model

Seven- step procedure 5.13% 63.06%

AIC- based model selection 5.55% 81.51%

AICc- based model selection 5.56% 80.90%

BIC- based model selection 5.29% 73.03%
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be reluctant to adopt any approach which compromises statistical 
power.

Researchers who do not know in advance whether or not there 
is overdispersion or zero- inflation, might decide to simply use a ZIP 
or ZINB as a ‘safer bet’ (Perumean- Chaney et al., 2013) and pay a 
price in terms of efficiency (Williamson et al., 2007). However, this 
is problematic. We observed that the ZIP and ZINB models, when 
fit to ordinary Poisson data, can lead to type 1 error well above the 
advertised rate when sample sizes are large. (Future work should 
consider whether hurdle models (Rose et al., 2006) are similarly 
problematic.) Instead, if there is sufficient data, researchers should 
proceed with a model selection procedure, ideally one based on ef-
ficient score tests. Our simulation study suggests that, if sample 
sizes are sufficiently large, there is little need to worry about model 
selection bias following a series of sequential score tests. However, 
when sample sizes are small, our simulation study demonstrated 
that model selection bias can lead to potentially substantial type 1 
error inflation.

An interesting result from the simulation study is that AIC (or 
AICc) and BIC are likely to choose the correct model more often than 
the seven- step procedure. However, this does not mean that model 
selection based on AIC (or AICc) can be recommended. We observed 
that, even when sample sizes are large and when the true underlying 
distribution of the data is Poisson, using AIC (or AICc) to select the 
‘best’ model can lead to substantial type 1 error inflation. The BIC is 
less problematic.

Future work should investigate the suitability of other model- 
selection criteria. These include simulation- based methods; see 
Brewer et al. (2016), Dunn and Smyth (1996) and Hartig (2017). While 
simulation is considered by some to be a powerful tool for assessing 
model fit, it remains ‘rarely used’ (Harrison et al., 2018). It would be 
beneficial to assess how simulation- based tests for overdispersion 
and zero- inflation compare to the more traditional score- based tests 
we considered in our study.

Regardless of the method used for model selection, the process 
of selecting a model for inference based on the data ignores a cru-
cial source of uncertainty. And, if the model selection procedure and 
the hypothesis testing which follows are not independent, type 1 
error inflation may occur. Ignoring the possibility of overdispersion 
and zero- inflation during data analyses can lead to invalid inference. 
However, if one does not have sufficient power to confidently test 
for overdispersion and zero- inflation, it may be best to simply use a 
model that can accommodate for these possibilities (e.g. use a robust 
model) instead of going through a model selection procedure that 
might inflate the type 1 error.

In summary, if one does not have the power to test for distribu-
tional assumptions, testing for distributional assumptions may not be 
wise. And if one does have a sufficiently large sample size to test for 
distributional assumptions, testing for distributional assumptions may 
be very beneficial. Note that our simulation study only included a single 
covariate and in studies where there are several covariates, it will no 
doubt be difficult to determine what constitutes a ‘sufficiently large’ 
sample size. To conclude, we note that researchers should always be 

cautious when interpreting results with smaller sample sizes (Button 
et al., 2013). Model selection bias is just one more reason to have a 
healthy skepticism of null hypothesis significance testing when sample 
sizes are small.
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