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Introduction
We are grateful to all the discussants for their thoughtful perspectives. Specifically, Guha
and Rizzelli offer compelling mathematical arguments that help us better understand
when a frequentist’s confidence interval and a Bayesian’s credible interval will agree.
Lad, and Held and Pawel consider, each in their own insightful way, the predictive
probability distribution of a future observation. Srakar suggests that one might avoid the
“strange behaviour” of the spike and slab prior by considering a peri-null prior instead.
Clarke covers a lot of ground, ranging from concrete extensions beyond the canonical
one-parameter problem, to more conceptual musings on hypothesis testing writ large.
Rice provides much food for thought about being more explicitly decision-theoretic
and considering different loss functions. Ly, Boehm, and Grünwald point to desirable
properties of the anytime-valid confidence sequence based on inverting the Bayes factor
decision, analogous to inverting a frequentist test to get a confidence interval. Finally,
Heck, and Johnson and Datta offer perhaps the strongest opinions about the merits of
the spike and slab prior and the relationship between estimation and testing.

When it comes to testing, the procedure of rejecting a point-null hypothesis (e.g.,
H0 : θ = 0) if and only if the null value is outside of the posterior credible interval
ensures compatibility between hypothesis testing and parameter estimation. Those who
reject a point-null hypothesis whenever the Bayes factor (BF) is above a certain thresh-
old are also following this procedure with a (perhaps implicitly specified) spike and slab
prior (Campbell and Gustafson, 2023). Evidently, not all believe that this compatibility
is desirable. Heck, for instance, writes in favour of a “conceptual separation between hy-
pothesis testing of a point-null hypothesis and parameter estimation,” and suggests that
“the estimate for the test parameter θ is interesting only if the data provide sufficient
evidence for the effect.”

In our opinion, agreement between testing and estimation is fundamentally appeal-
ing. We see the ongoing angst about the role of p-values (see Matthews, 2021 for a
recent commentary) as partly fueled by a desire to think of testing and estimation sep-
arately. As well, the substantial, and often tricky, literature on mitigating challenges
of “inference after selection” (see Kuchibhotla et al., 2022 for a recent review) arises
from wanting said separation. So instead of debating the merits of compatibility be-
tween testing and estimation, we focus this rejoinder on the question of whether or not
specifying a spike and slab prior (either implicitly with a BF, or explicitly) is ever a
good idea.
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Is a spike and slab prior ever a good idea?
Ideally, one should specify a prior distribution for θ that aligns with the true parameter-
generating distribution (PGD), though before saying more, it is worth considering what
the PGD (true or otherwise) actually is. One take, emphasized by Gustafson and Green-
land (2009), is to think of the PGD as describing the true parameter values for a series of
different scientific relationships that a “lab” will study over time. While still somewhat
amorphous, this is more concrete than simply saying the PGD is what “Mother Nature”
draws from to set the state of the world before data are generated. However, regardless
of the narrative employed, the math is clear. If the prior employed matches the PGD,
posterior credible intervals are guaranteed to have certain desirable decision-theoretic
properties as well as correct “labwise coverage” (i.e., taken with respect to the distribu-
tion of θ and the data jointly, the probability that θ is within the bounds of the posterior
(1 − α)% credible interval will be equal to (1 − α)). However, even upon adopting the
“lab” interpretation of the PGD, without omniscient powers the distribution cannot be
known exactly. Thus, approximations, as well as practical considerations, must inform
one’s prior specification.

Based on the notation that “the point-null is never true” (Nester, 1996; Gelman and
Carlin, 2017; Gelman et al., 2013), many might argue that the spike and slab prior is
never a reasonable approximation of the PGD. However, there are scenarios in which a
spike and slab prior seems appropriate. For instance, spike and slab priors may be well
suited for “semi-continuous” parameters (e.g., a parameter corresponding to rainfall
(equal to exactly zero if it did not rain, positive and continuous otherwise), or to the
financial gain/loss from a possible investment (equal to exactly zero if the investment
was never made, continuous otherwise)). When θ corresponds to a treatment effect,
it may be more difficult (although not impossible) to justify a spike and slab prior.
Gelman et al. (2013) for example, are unequivocal on this matter, writing: “we do not
like models that assign a positive probability to the event θ = 0, if θ is some continuous
parameter such as a treatment effect.” However, even if the spike and slab prior is not
a realistic approximation of the PGD, it might still be a good pragmatic choice.

Advantages
Aside from providing some computational conveniences (e.g., some high-dimensional
models can be fit more easily with spike and slab priors (Castillo et al., 2015)), the
spike and slab prior offers one clear advantage: the possibility of a seemingly objective
procedure to “accept the null hypothesis.” The procedure is as follows. One accepts
the null if and only if Pr(θ = 0|data) ≥ (1 − α). This procedure is often described
in terms of the Bayes factor whereby one accepts the null whenever BF ≤ (1 − α)/α,
with implied prior model odds of 1:1; see Lavine and Schervish (1999); Campbell and
Gustafson (2023).

Without a spike at zero in the prior, the posterior probability on the point null will
necessarily be equal to zero (i.e., Pr(θ = 0|data) = 0, regardless of the data), and one can
only “accept the null” approximately. Typically this is done by defining an “equivalence
margin”, ∆, and evaluating whether Pr(θ ∈ ∆|data) ≥ (1−α). Regrettably, defining ∆
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(also known as a “region of practical equivalence”) requires some degree of subjectivity
about what values of θ can be considered negligible; see Campbell and Gustafson (2021,
2024); Schwaferts and Augustin (2020).

The procedure of specifying a spike and slab prior and “accepting the null” whenever
Pr(θ = 0|data) ≥ (1−α) certainly has appeal as being the natural opposite to rejecting
the null whenever the point value is outside of the posterior credible interval. However,
in practice, we see two drawbacks.

First, small, seemingly inconsequential changes in how the slab portion of the spike
and slab prior is defined can have large impacts on the posterior; this is well documented,
typically being framed as the BF being highly sensitive to the prior variance under the
alternative model (e.g., Gelman et al., 2013). Careful sensitivity analyses and/or the
use of so-called “default” or “intrinsic” priors may provide some remedy (Rouder and
Morey, 2012; Womack et al., 2014), but the issue remains delicate.

Second, as Johnson and Datta explain, the slow rate of convergence makes it difficult
to accept the null unless sample sizes are very large. Johnson and Datta recommend
using a “non-local” (NL) density for the slab part of the prior so that it is easier to
distinguish between the null and alternative hypotheses when the null is true. This
solution however, requires one to make a rather subjective choice with respect to how
exactly to define the NL density.

To illustrate, suppose a NL normal moment density with modes at ±0.3 is used to
define the slab part of a spike and slab prior on θ, as in Johnson and Datta’s Figure 1.
Then with data consisting of Z = 1.645 and n = 1,000, one would accept the null since
Pr(θ = 0|data) = 0.958 (or equivalently BF = 1/22.8). (Note that a 95.8%CrI consists
solely of {0}, while the strict 95.0%CrI is not defined.) If instead a NL normal moment
density with modes at ±0.1 is specified, one would not accept the null since Pr(θ =
0|data) = 0.594 (or equivalently, BF = 1/1.5). In this case, the equal-tailed 95%CrI
does not exist but a lopsided interval of [0.000, 0.100) does have posterior probability
mass of exactly 0.950, since Pr(θ < 0|data) = 0.003 and Pr(θ < 0.100|data) = 0.953.
With a small difference in specifying the NL normal moment density (e.g., modes at
±0.3 vs. ±0.1) having a substantial impact on one’s conclusions, effectively the need to
subjectively determine what values of θ can be considered negligible remains.

Disadvantages
Aside from the minor inconvenience that certain credible intervals cannot be defined
exactly, we see one main disadvantage of the spike and slab prior: the posterior credible
interval obtained with a spike and slab prior will not converge asymptotically to the
frequentist confidence interval. In other words, specifying a spike and slab prior allows
for the possibility of a disagreement between the frequentist and Bayesian analyses even
with very large sample sizes. This is the crux of the Jeffreys-Lindley paradox but the
extent to which this is problematic is clearly a matter of opinion.

Srakar suggests that one might avoid this “strange behaviour” by considering a
peri-null prior instead. Indeed, Cherry (2023) recently explains how if the point null is
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replaced by a narrow distribution, the Bayesian and frequentist answers do not diverge
(if one asks the same question with both approaches). However, a peri-null prior will re-
quire a rather subjective choice to define its narrowness and “seemingly inconsequential
changes in prior specification may asymptotically yield fundamentally different results”
(Ly and Wagenmakers, 2022).

Johnson and Datta suggest that, regardless of the potential for disagreement between
Bayesian and frequentist answers, a credible interval based on a spike and slab prior
is still desirable on the grounds of consistency, i.e., asymptotically a type I error rate
of zero is achieved. (Johnson and Datta: “[T]here is α probability that the confidence
interval will not contain {0}, no matter how large n is even when the null hypothesis
is true. In this regard, there is a fundamental disagreement between the intervals. The
credible interval [with a spike and slab prior] is consistent and the confidence interval
is not.”) A desire for this type of consistency is certainly understandable (and brings to
mind the definition of “Chernoff consistency” given in Shao, 2008). For balance, however,
note that other routes to consistency are possible. A (1−α)% posterior credible interval
based on a continuous prior (or a classical (1−α)% confidence interval, for that matter)
can easily be made consistent by letting α = αn → 0 as n → ∞. (And for some, the
explicit control of the rate at which the type 1 error rate vanishes might be appealing.)

Reporting
If one does use a spike and slab prior, certain credible intervals cannot be defined exactly
and it is not immediately clear how to report their results. Several discussants suggest
redefining the (1 − α)% credible interval conservatively as the interval just big enough
to have support of at least 1− α. This seems like a reasonable approach. Alternatively,
one could simply report the (1− γ)% credible interval where γ is the value closest to α
for which the credible interval can be defined exactly. This follows the recommendation
of Young et al. (2005) that is cited by Rice.

Heck suggests reporting the BF as well as the “default credible interval” (i.e., the
credible interval obtained without the spike in the prior, what Johnson and Datta call
the “conditional posterior credible interval under the alternative”). The BF (as it is
most often interpreted) corresponds to a spike and slab prior, which is of course a very
different prior distribution than the prior implied by reporting the “default credible
interval”. In principle, we are not against reporting a variety of different estimates arising
from different priors. Our concern is that making these two things the default inferential
summaries, without emphasizing the wildly different priors driving them, obscures what
is really going on. We would therefore argue for emphatic labeling of what kind of prior
drives what answer.

We also recommend that, at a minimum, if one reports a BF, then one should
also report the corresponding posterior estimate based on the implied spike and slab
prior; see Campbell and Gustafson (2023). This is rarely done. For example, in a recent
Bayesian re-analysis of randomized trials data (Pittelkow et al., 2024), BFs are reported
without any associated credible intervals at all. The authors conclude that their analyses
with the BF are “more informative than traditional measures of uncertainty such as the
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confidence interval, because it allowed us to disambiguate between absence of evidence
and evidence of absence.” Perhaps, but a BF without any accompanying credible interval
nor any explanation/justification of the (implied) priors is also easily misinterpreted
(Tendeiro et al., 2024; Campbell and Gustafson, 2024).

Perhaps something all can agree upon is the usefulness of reporting estimates and
credible intervals for a hypothetical future observation, Yn+1. Predicting the “next ob-
servation”, while perhaps not the main scientific objective, certainly helps one under-
stand the true degree of posterior uncertainty. It is also reassuring that, as discussed by
Lad, and Held and Pawel, the prior on θ will have less impact on the credible interval
for Yn+1. Moreover, as demonstrated by Held and Pawel, the confidence interval and
credible interval for Yn+1 will converge, even with a spike and slab prior on θ (but the
rate of convergence will be much slower).
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