# THE UNIVERSITY OF BRITISH COLUMBIA <br> FINAL EXAMINATION, April 2016 <br> STAT 306, Finding Relationships in Data 

TIME: $21 / 2$ hours
THIS EXAMINATION CONSISTS OF 4 PAGES. THERE ARE 6 PROBLEMS FOR A TOTAL OF 100 POINTS. PLEASE CHECK TO ENSURE THAT THIS PAPER IS COMPLETE.
Special Instructions: Please write your name and student number on the front page of the exam booklet. A non-programmable calculator and a two-sided sheet of notes are allowed. The problems can be done in any order. READ THE QUESTIONS CAREFULLY.
Suggestion: use the left-hand side of booklet for scratch work, and the right-hand side for submitted answers. For a large-sample z or t critical value for a $95 \%$ confidence interval, use 1.96 or 2 . For smaller degrees of freedom, $\mathrm{t}_{35,0.975}=2.030, \mathrm{t}_{24,0.975}=2.064, \mathrm{t}_{21,0.975}=2.080, \mathrm{t}_{10,0.975}=2.228, \mathrm{t}_{3,0.975}=3.182$.
(16) 1. Scientists are assessing if the CO 2 concentration at a single location can be used to estimate the mean global annual temperature. The variables are $\mathrm{x}=\mathrm{CO} 2$ concentration (in parts per $10^{8}$ ) at top of Mauna Loa in Hawaii and $y=$ mean annual temperature in Celsius (over land and water across the globe). Consider the data for 1959-1995 $(n=37$ years $)$; for example $(x, y)=(2.452,16.53)$ in 1959 and $(x, y)=(6.412,16.83)$ in 1995. Summary statistics are: $\bar{x}=4.639, s_{x}=1.226, \bar{y}=16.621, s_{y}=0.098, r_{x y}=0.508$.
(a) What are the slope $\hat{\beta}_{1}$ and intercept $\hat{\beta}_{0}$ of the least squares regression line for $y$ as a function of $x$ ?
(b) What is the residual SD : $\hat{\sigma}=\sqrt{(n-2)^{-1} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}}$ ?
(c) Suppose $\left(x_{i}, y_{i}\right)$ are indexed by increasing year. Describe a residual plot to check if the residuals are serially correlated.
(d) Assuming that the residual plot (c) is acceptable, what is a prediction interval for mean temperature of the globe when the CO 2 concentration is 6.5 parts per $10^{8} ?$
(16) 2. An experiment was done to find the rate of bottle return for 6 different deposit levels from 2 to 30 cents. Data and logistic regression output are shown below.

| deposit | 2 | 5 | 10 | 20 | 25 | 30 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| \#sold | 100 | 100 | 100 | 100 | 100 | 100 |
| \#returned | 14 | 20 | 34 | 59 | 81 | 90 |

```
            Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.10829 0.19107 -11.03 <2e-16
deposit 0.13715 0.01072 12.79 <2e-16
    Null deviance: 831.75 on 599 degrees of freedom
Residual deviance: 609.41 on 598 degrees of freedom,
AIC: 613.41
```

(a) Obtain the sample proportions for the 6 deposit levels. Compare with the fitted proportions using the estimated $\beta$ 's given above. Is the logistic model a good fit?
(b) Assuming the logistic model is reasonable, what is an approximate $95 \%$ confidence interval for the slope parameter $\beta_{1}$ ?
(c) What is the estimated probability that the bottle will be returned if the deposit is 15 cents?
(d) What is the estimated deposit level so that the expected return rate is $50 \%$ ?
(18) 3. http://www.cdc.gov/nchs/nhanes.htm has data sets from the National Health and Nutrition Examination Survey. Some variables such as total (body) fat are based on dual-energy x-ray absorptiometry, so are harder to measure. Other body measurements such as weight (wt), height (ht), body mass index (bmi), waist circumference, triceps skin fold (tri) are easier to measure. So one might try to find a prediction equation for total fat (tofat) based on these other body measurements. Below are some summary statistics for a sample of 631 men between the ages of 20 and 40 in the $2003-2004$ survey. The right-hand side has the sample correlation matrix.

| summary | $w t$ | $h t$ | bmi | waist | tri | tofat |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Min. | 42.80 | 154.1 | 16.01 | 63.70 | 3.50 | 6.785 |
| 1st-Qu. | 70.60 | 170.8 | 23.36 | 84.30 | 9.30 | 15.854 |
| Median | 79.90 | 175.8 | 26.11 | 92.30 | 13.10 | 20.777 |
| 3rd-Qu. | 91.50 | 180.9 | 29.41 | 100.45 | 18.40 | 26.079 |
| Max. | 132.40 | 193.0 | 41.97 | 138.30 | 38.80 | 55.052 |
| Mean | 81.75 | 175.5 | 26.51 | 92.82 | 14.19 | 21.622 |
| SD | 15.23 | 7.46 | 4.47 | 12.22 | 6.54 | 8.097 |


| cor | $w t$ | $h t$ | bmi | waist | tri | tofat |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w t$ | 1.000 | 0.407 | 0.891 | 0.885 | 0.610 | 0.880 |
| $h t$ | 0.407 | 1.000 | -0.046 | 0.109 | 0.010 | 0.149 |
| bmi | 0.891 | -0.046 | 1.000 | 0.916 | 0.665 | 0.887 |
| waist | 0.885 | 0.109 | 0.916 | 1.000 | 0.705 | 0.942 |
| tri | 0.610 | 0.010 | 0.665 | 0.705 | 1.000 | 0.795 |
| tofat | 0.880 | 0.149 | 0.887 | 0.942 | 0.795 | 1.000 |

Next are some summaries of the best fitting 2-, 3-, 4- and 5 -variable models from regsubsets() in R.

| 2-variable | Estimate | SE | tvalue | 3-variable | Estimate | SE | tvalue |
| :--- | :---: | :---: | :---: | :--- | :---: | :---: | ---: |
| (Intercept) | -29.657 | 0.803 | -36.94 | (Intercept) | -26.985 | 0.787 | -34.28 |
| waist | 0.503 | 0.010 | 48.25 | wt | 0.121 | 0.012 | 10.29 |
| tri | 0.321 | 0.019 | 16.49 | waist | 0.366 | 0.016 | 22.30 |
|  |  |  |  | tri | 0.329 | 0.018 | 18.23 |
|  |  |  |  |  |  |  |  |
| 4-variable | Estimate | SE | tvalue | 5-variable | Estimate | SE | tvalue |
| (Intercept) | -24.373 | 2.886 | -8.45 | (Intercept) | 20.794 | 12.322 | 1.69 |
| wt | 0.131 | 0.016 | 8.26 | wt | 0.408 | 0.075 | 5.43 |
| ht | -0.014 | 0.015 | -0.94 | ht | -0.271 | 0.070 | -3.88 |
| waist | 0.357 | 0.019 | 18.47 | bmi | -0.892 | 0.237 | -3.77 |
| tri | 0.327 | 0.018 | 18.06 | waist | 0.367 | 0.019 | 19.00 |
|  |  |  |  | tri | 0.329 | 0.018 | 18.33 |

Other summaries of the above fits are:

| \#vars | residSD | df | $R^{2}$ | $\operatorname{adj} R^{2}$ | $C_{p}$ | CVRMSE |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 2.268 | 628 | 0.9218 | 0.9216 | 123.3 | 2.277 |
| 3 | 2.099 | 627 | 0.9331 | 0.9328 | 17.1 | 2.111 |
| 4 | 2.099 | 626 | 0.9332 | 0.9328 | 18.2 | 2.113 |
| 5 | 2.077 | 625 | 0.9347 | 0.9342 | 6.0 | 2.094 |

(a) Which of the 5 explanatory variables leads to the best 1-variable simple linear regression model? Why?
(b) What is the adjusted $R^{2}$ value for the 1-variable model in (a)?
(c) What is the partial correlation $r_{\text {tofat,tri; waist }}$ ?
(d) Consider the partial correlation $r_{\text {tofat,ht;wt,bmi,waist,tri }}$. Which of the following is correct based on the above summaries: (i) $r_{\text {tofat,ht;wt,bmi,waist,tri }}>0$; (ii) $r_{\text {tofat,ht;wt,bmi,waist,tri }}<0$; (iii) insufficient information to determine the sign. Explain your choice.
(e) Which of the four models would you prefer? Explain your reasoning in one sentence.
(f) Why does the coefficient for wt change so much among the models with $3,4,5$ explanatory variables?
(21) 4. A paper helicopter experiment (http://www.paperhelicopterexperiment.com/) was run to find some optimal dimensions. Explanatory variables are body length and body width (both in cm ) of a piece of paper before the folding/cutting is done to produce the helicopter. The response variable $y$ is the flight time (to land on floor) after release from a height of 2.5 m . With variables abbreviated as len and wid, the data are:

| len | wid | flighttime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5.6 | 1.4 | 1.98 | 6.6 | 1.4 | 1.85 | 6.1 | 2.1 | 1.82 | 6.6 | 2.1 | 2.00 |
| 6.1 | 1.4 | 1.89 | 6.1 | 1.4 | 1.87 | 6.1 | 0.7 | 1.43 | 5.6 | 0.7 | 1.25 |
| 6.6 | 2.1 | 2.08 | 6.6 | 2.1 | 1.86 | 6.1 | 1.4 | 1.73 | 6.6 | 0.7 | 1.00 |
| 6.1 | 0.7 | 1.41 | 5.6 | 0.7 | 1.10 | 6.6 | 0.7 | 0.93 | 6.1 | 2.1 | 1.85 |
| 5.6 | 1.4 | 1.87 | 5.6 | 2.1 | 1.69 | 5.6 | 1.4 | 1.83 | 5.6 | 0.7 | 1.21 |
| 6.1 | 0.7 | 1.30 | 5.6 | 2.1 | 1.69 | 6.6 | 1.4 | 1.98 | 5.6 | 2.1 | 1.61 |
| 6.6 | 0.7 | 0.93 | 6.6 | 1.4 | 1.94 | 6.1 | 2.1 | 1.94 |  |  |  |

Summaries from fitting a linear equation, a quadratic with original variables and a quadratic with centred variables (clen=len-6, cwid=wid-1.5) are given below.

(a) What are three things in the regression summaries that indicate that the quadratic function fit is better than the linear function?
(b) For the quadratic model, which $\beta$ 's are invariant to the shifting of length and width by constants?
(c) What are the best residual plots to check that the quadratic model adequately handles the curved surface for flight time as a function of length and width?
(d) For the $\mathbf{X}$ matrix for quadratic with centred variables, what are the values of the 6 columns in row 1?
(e) Using the above summaries, obtain a point estimate, prediction SE and a prediction interval from the quadratic fit when length $=6 \mathrm{~cm}$, width $=1.5 \mathrm{~cm}$ or clen $=0$, cwid $=0$. (Note: little arithmetic is needed).
(f) Based on the fitted quadratic, what are the estimated optimal length and width to maximize flight time?
(14) 5. Consider a data set to daily log returns of 8 stocks in the American market in 2010-2011 (504 trading days); the stocks are: LO (Lorillard Tobacco), MO (Altria Tobacco), PM (Philip Morris Tobacco), RAI (Reynolds Tobacco), DPS (Dr Pepper Snapple Beverage), KO (Coca-Cola), MNST (Monster Beverage), PEP (Pepsico). Principal component analysis was applied to both the sample covariance matrix and sample correlation matrix. A summary of some results are below.

| stock | LO | MO | PM | RAI | DPS | KO | MNST | PEP |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| sample mean | 0.0009 | 0.0010 | 0.0011 | 0.0011 | 0.0007 | 0.0005 | 0.0017 | 0.0003 |
| sample SD | 0.0149 | 0.0100 | 0.0125 | 0.0119 | 0.0158 | 0.0104 | 0.0202 | 0.0101 |
| row 1 | -0.0272 | 0.0006 | -0.0088 | 0.0014 | -0.0116 | -0.0122 | 0.0041 | 0.0120 |


(a) How many components are needed to explain $80 \%$ of the variation in the data using the sample covariance matrix?
(b) Interpret the first two components from the coefficients of the loadings for both sets of output.
(c) The first observation in the data set is given in the above table along with the sample means and SDs of the 8 variables. For observation 1, what is the value of comp1 for the left-hand side (in the new coordinate system centred at the vector of sample means). Write down an expression without doing the calculation.
(15) 6. Let data be $\left(x_{i}, y_{i}\right), i=1, \ldots, n$, where all of the $x_{i}$ are positive. For simple linear regression with model $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1, \ldots, n$, the least squares estimate of $\beta_{1}$ is $\hat{\beta}_{1}=\sum_{i=1}^{n} a_{i} y_{i}$ where $a_{i}=\left(x_{i}-\bar{x}\right) /\left[(n-1) s_{x}^{2}\right]$, and the least squares intercept is $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$. Let $\hat{B}_{1}$ be the least squares slope when considered as a random variable. Determine the variance of $\hat{B}_{1}$ under the two scenarios given below.
(a) (heteroscedastic) $\epsilon_{i}$ are independent $N\left(0, \sigma_{i}^{2}\right)$ random variables, where $\sigma_{i}^{2}=\gamma_{0}+\gamma_{1} x_{i}$ with $\gamma_{0}>0$ and $\gamma_{1}>0$ being parameters. What is $\operatorname{Var}\left(Y_{i}\right)$ ? What is $\operatorname{Var}\left(\hat{B}_{1}\right)$ ?
(b) (serial dependence with $i$ an index for a time sequence) $\epsilon_{i}$ are serially dependent $N\left(0, \sigma^{2}\right)$ random variables such that $\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=\sigma^{2} \gamma^{|i-j|}$ for $i, j \in\{1, \ldots, n\}$, where $0<\gamma<1$. What is $\operatorname{Var}\left(\hat{B}_{1}\right)$ ?
(c) Assume the model in (b), what is the correlation of $\epsilon_{1}, \epsilon_{2}$ (equivalently, the correlation of $\epsilon_{i}, \epsilon_{i+1}$ )?
(d) [Harder.] Assume the model in (b). Let $e_{i}=y_{i}-\hat{y}_{i}$ and $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ for $i=1, \ldots, n$. Based on your answers in (b) and (c), suggest an estimated standard error of $\hat{\beta}_{1}$ that is a function of the $e_{i}$ and $x_{i}$.

