
Stat	306:		
Finding	Rela1onships	in	Data.	

Lecture	9	
Sec1on	3.3	+	Sec1on	3.6	(recap)	+	Sec1on	3.7	

+	Sec1on	3.8	+	Sec1on	3.10	



The	main	assump1on	of	linear	regression	is	that	the	outcomes,	Yi	,		(for	i	=	1,…,n)	,	
	are	independently	normally	distributed.		This	follows	directly	from	our	model:	

	
3.3	Sta1s1cal	model	for	mul1ple	regression	
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errors	

1.	 2.	 3.	 4.	 5.	 6.	



1.	 We	obtain	the	es1mator	that	minimize	the	Sum	of	
squares	by	simple	matrix	calculus:	

Basic	informa1on	on	matrix	calculus:	h`ps://en.wikipedia.org/wiki/Matrix_calculus	

=	(y	–Xb)T(y	–Xb)	

See	3.29	and	3.30	



2.	

or	stated	explicitly	in	terms	of	vectors	and	matrices:	

Then	we	have	that	B	is	normally	distributed	random	vector,	since:	

q	



3.	 Is	the	least	squares	es1mator	
for	β	unbiased	?	Does	E[b]	=	β	?	

source:	h`ps://web.stanford.edu/~mrosenfe/soc_meth_proj3/matrix_OLS_NYU_notes.pdf	



4.	 We	have	that:	
Var(		B			)		=		Var(AY)	
Var	(B)						=	A	Var(Y)	AT	

More	informa1on:	h`ps://en.wikipedia.org/wiki/Covariance_matrix#Generaliza1on_of_the_variance	

Var(B)						=		

We	also	have	that	the	variance-covariance	matrix	of	Y	(random	vector	of	length	n)	is	
Var(Y)	=	σ2In	,	where	In	is	the	n	by	n	iden1ty	matrix.	
	

Therefore,	following	equa1ons	3.69	–	3.72,	we	have:	



5.	



6.	

b	+/-																									se(b)	
95%	Confidence	Interval:	



7.							p-values…	



7.							p-values…	



7.							p-values…	



7.							p-values…	
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1.	 3.	2.	



1.	

Typo:	should	be	n-2	

MS(Res)	is	our	es1mator	for	σ2	



3.	 MS(Res)	is	an	unbiased	es1mator	for	σ2.			
	
This	is	explained	in	Sec1on	3.7		

3.7	Denominator	of	the	residual	SD	
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3.	 MS(Res)	is	an	unbiased	es1mator	for	σ2.			
	
This	is	explained	in	Sec1on	3.7		

3.7	Denominator	of	the	residual	SD	
In	different	textbooks	nota1on	can	be	a	bit	different.		For	example,	from		
“Introduc1on	to	Linear	Regression	Analysis”	by	Douglas	C.	Montgomery,	we	have:	

k	

k	
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Bonus:	Predic'on	intervals	

+/-	

95%	Predic1on	Interval:	
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3.8	Residual	plots	

We	are	looking	at	the	residuals	to	verify	that	our	model	is	correct:	

This	model	has	the	following	assump'ons:	
	

	1.	residuals	are	independent	
	2.	residuals	are	normally	distributed	
	3.	residuals	all	have	common	variance	σ2		(homoscedas1city)	
	 	-i.e.	variance	does	not	depend	on	any	X	or	combina1on	of	X	
	4.	Residuals	have	constant	mean	of	0	(i.e.	no	trends).		
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3.8	Residual	plots	

This	model	has	the	following	assump'ons:	
	

	1.	residuals	are	independent	
	2.	residuals	are	normally	distributed	
	3.	residuals	all	have	common	variance	σ2		(homoscedas1city)	
	 	-i.e.	variance	does	not	depend	on	any	X	or	combina1on	of	X	
	4.	Residuals	have	constant	mean	of	0	(i.e.	no	trends).		
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•  Categorical	predictors	

•  Quadra1c	(polynomial)	rela1onships	
	
•  Outliers	

•  How	to	fix	heterogeneity	
	
•  Regression	to	the	mean	
	
•  Simpsons	Paradox	

•  Unobserved	Confounding	

The	art	of	linear	regression	
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3.9	Categorical	explanatory	variables	
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3.9	Categorical	explanatory	variables	
How	do	we	interpret	this	model?	



3.9	Categorical	explanatory	variables	
How	do	we	make	predic'ons	from	this	model?	


