2.8 Exercises

2.1 This question concerns a galaxy data set on Hubble’s law from R.J. Larsen and M.L. Marx (1981),
An Introduction to Mathematical Statistics and its Applications, Prentice-Hall. Since the 1920’s it has
been known that the universe is expanding and that more distant galaxies are receding the fastest.
Hubble’s law states that there is a linear relationship between z = the distance of a galaxy from Earth
(in millions of light years) and y = the velocity at which the galaxy is moving away from the Earth
(say, in thousands of km per second). The constant of proportionality is Hubble’s constant, which has

to be estimated from empirical data. Table 2.5 contains data for 11 galaxies.

Table 2.5: Data for Hubble’s law

cluster distance velocity
(millions-of-light-years) (thousands-of-km/sec)
Virgo 22 1.21
Pegasus 68 3.86
Perseus 108 5.15
Coma Berenices 137 7.56
Ursa Major No.1 255 15.0
Leo 315 19.3
Corona Borealis 390 21.6
Gemini 405 23.2
Bootes 685 39.4
Ursa Major No.2 700 41.8
Hydra 1100 61.2




2.5.2 Derivations
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Useful identity number 1.

D iz (Wi —w) = —nw + ) ;7 (w;)

—nw + ”% > i1 (wi)

= —nw + nw = (




Useful identity number 2.

> ima (wi —w)* =30, (wf) — nw*

> i1 (wi —w)? =300 (wi — 2wiw + w?)
=Yg (wi) — 20 377 (w;) + naw?
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Usetul identity number 3.
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Objective:

Design and
Methods:

Results:

Conclusions:

Small Print:

Sample statistics

Age vs. Money

b, = 17.7
The purpose of this observational study was to b, = 0.55
demonstrate if, and to what extent, age is s =155
associated with money. RZ = 0.49

We collected a random sample of individuals and for each

determined their age (recorded in years) and the amount

For statistic b, :

of money (in dollars) in their accounts. Analysis of 95% C.I. = [()-()5, 1-()5]
the data was done using linear regression. p-value = (0.036

We obtained a random sample of n = 9 subjects. There is a

statistically significant association between age and money (p-value =0.036).
For every additional year in age, an individual’s amount of money increases
on average by an estimated of $0.55 (95% C.I. = [S0.05, $1.05]).

We found that, as hypothesized, age is associated with money.
In our sample age accounted for about half of the variability
observed in money (R?=0.49). We predict that a 50 year old will
have $45.1 (95% P.l. = [$5.6, $84.5]), whereas a 40 year

old will have $39.6 (95% P.I. = [S0.8, $78.4]).

The analysis rests on the following assumptions:

the observations are independently and identically distributed.

the response variable, money, is normally distributed.
Homoscedasticity of residuals or equal variance.

the relationship between response and predictor variables is linear.
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“Our research (using linear regression) indicates that older
people hold and use more cash.”



5.3.1 Age, Income,and Education

The role of age is of interest because one could argue that the enduring importance of cash
could be due to habit persistence. Indeed, previous literature indicates that older people hold
and use more cash while young consumers are more likely to use new payment technologies
(e.g., Daniels and Murphy, 1994; Boeschoten, 1998; Carow and Staten, 1999; Stavins, 2001;
Hayashi and Klee, 2003).

Our results in Figure 3 reveal that “older” people use significantly more cash than younger
people except for US, where younger individuals use more cash than older individuals. Note
again that these descriptive statistics assume all other factors to be fixed. These figures regarding
age do not control for differences in expenditure patterns or other personal characteristics, for
example, younger consumers may buy different product and/or services and at different venues
than older individuals. Therefore, a final answer on the role of age can only be given with
estimations that control for these other variables, which will be focus of the next section.'®

Income and education have been cited in the literature as important factors, with cash usage
declining with higher income and education (e.g. Arango et al. (2011) for CA, von Kalckreuth
et al. (2014b) for DE, and Schuh and Stavins (2010) as well as Cohen and Rysman (2013) for
US). Figure 3 confirms differences along income terciles with less cash usage by higher income
respondents. Even stronger differences are found along education. Notably, these differences

8von Kalckreuth et al. (2014a) find no evidence in favour of strong habit persistence. Instead, they attribute
higher cash usage of older people to their differential characteristics, e.g. lower opportunity costs of time or lower
income.
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3.1 Least squares with two or more
explanatory variables

3.1 Least squares with two or more explanatory variables

This section extends the ideas in Section 2.1. The data are (y;,Z;1,Zi2), ¢ = 1,...,n. One can fit the

hyperplane equation y = by + b,z + by via least squares. This includes the special case where z, = z? in

which case the equation is the least squares quadratic in one explanatory variable.

The steps for fitting a line to (y;,zi), ¢ = 1,...,n, can be generalized, and are outlined below. The
least squares criterion is to minimize the sum of squares of vertical deviations. With by, b;, by as function

arguments, the objective function is:



prediction equation : y=b,+ b,x
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3.1 Least squares with two or more
explanatory variables

“hyperplane equation”

library(rgl)
f <- function(x1l, x2){ 23.27 + 0.68*x1 - 0.28*x2}
n <- 9

x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
x2 <- c(26, 49, 76, 37, 40, 0, 2, 10, 92)
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10)

VVVVVVVY

> plot3d(x1,x2,y, type="p", col="lightblue", xlab="X1- Age", ylab="X2-
Income", zlab="Y- Cash", site=5, 1lwd=15, size=12)

> my_surface(f, alpha=.2 )

< |



3.1 Least squares with two or more
explanatory variables

“hyperplane equation”
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3.1 Least squares with two or more
explanatory variables

Once again we can minimize the least squares with simple calculus:

(3.1) S(bo, b1, b2) = Z(yz — b — b1zi1 — bazin)®.

=1

Take partial derivatives with respect to bg, b1, bs. This leads to:

0S =
(3.2) Dby —2 (y; — bo — b1t — basa),
=1
0S
(33) aT = =2 szl , bO — blle beiZ)a
1
0S
(34) — = =2 Z 51322 b() — bla:zl — bQ.TZQ).

Obqy



3.1 Least squares with two or more
explanatory variables

Set the equations to 0, divide by —2 and use the algebraic steps as in (2.16)—(2.17).

( bo, b1, 82), rewrite as

(3.5) nbo + by Zﬂiu + by Zﬂiw = Zyia
i=1 i=1

i=1
(3.6) bo Zl’ﬂ + by Z z) + by Z Ti1Tiz = Z Ti1Yis
i=1 i=1 i=1 i=1

n n n
(3.7) bo Ziviz + by Z Ti1Ts0 + by Z T2, = Z Zi2Yi-
i—1 i—1 i—1
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3.1 Least squares with two or more
explanatory variables

Set the equations to 0, divide by —2 and use the algebraic steps as in (2.16)—(2.17).

( bo, b1, 132), rewrite as

n n n
(3.5) nbo + b1 sz‘l + by Z Tig = Z Yi

i=1 i—1 i=1
n N n R n n

(3.6) bo Z T;1 + by Z 3 + by Z Ti1Ti2 = Z Ti1Yi
i=1 i=1 i=1 i=1

(3.7) b Z Zio + by Z Ti1Tio + by Z T = Z Zi2Yi-
i=1 i=1 i=1 i=1

Put in matrix form:

n Z L1 Z Li2 5:)0 Z Yi
(3.8) Soin Soxh Y miawio ?1 = | > zayi |-
D Tia D TiiTio > T bo > TioYi



3.1 Least squares with two or more
explanatory variables

Put in matrix form:

n Z Ti1 Z L2 l:)o Z Yi
(3.8) S Yoz Y Tz 531 = | D zinyi
Do Tig D TiiTio > bo > TioYi

> matrix(c(n,sum(x1l),sum(x2),sum(x1l),sum(x1A2), sum(x1*x2), sum(x2),sum(x1*x2),sum(x2A2)),
nrow=3, ncol=3)
(.11 [,2] [,3]
[1,] 9 312 332
[2,] 312 16240 14119
[3,] 332 14119 20390
>
> matrix(c(b®@hat,blhat,b2hat),3,1)
Error in matrix(c(b®hat, blhat, bzZhat), 3, 1) : object 'b@hat' not found
>
> matrix(c(sum(y), sum(x1l*y), sum(x2*y)),3,1)
[,1]
(1,1 330
[2,] 14413
[3,] 11695



3.1 Least squares with two or more
explanatory variables

For the matrix form, write

(1 T 12
1 xo; @oo

L : 1 1
(3.9) X=1l, IE.’1 xiz , X' = (3311 T21
1 (]

\1 xnl an)

The dimensions are n x 3 for X, 3 x n for X?, nx 1 for y, and 3 x 1 for b.

> x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
> x2 <- c(26, 49, 76, 37, 40, 0, 2, 10, 92)
>y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10)
>

> X <- matrix(c(1,1,1,1,1,1,1,1,1,x1,x2),nrow=n,ncol=3)
> Xt <- t(X)

> y <- matrix(y, nrow=n, ncol=1)

> dim(X)

[1] 9 3

> dim(Xt)

[1] 39

> dim(y)

[1J 91

(yl\

Y2

Yi

\y:n/



3.1 Least squares with two or more
explanatory variables

Note that the entry in row s and column t of X7 X is the inner product of row s of X” and column ¢ of
X, or equivalently the inner product of columns s and ¢ of X. The sth diagonal entry of X? X is the inner

product of column s of X with itself, or the sum of squares of column s of X. Then, equation (3.8) becomes

(3.10) (X'X)b = X'y
= (XTX)'XTy.

o

(3.11) or

Equation (3.11) assumes that XTX is a non-singular matrix so that its inverse is defined. The discussion of

a condition for non-singularity is given in Section 3.11.

> bhat <- solve(Xt %*¥% X) %¥*% Xt %*% y
> bhat
[,1]

[1,] 23.2660767
[2,] ©.6814606
[3,] -0.2771398



3.1 Least squares with two or more
explanatory variables

Alternatively, to solve for the 5j’s, from the first partial derivative:

write

(312) BU — y - 6151 - 5252,

substitute into the other two equations (3.6) and (3.7), and show that b,. b, can be expressed in terms of the

sample covariances and variances

(3.13) 2, 5

Sziys Szays Szizas Szys Sz,

The resulting expressions for 51, 52 are generalizations of (2.22). The details are left as an exercise.



3.1 Least squares with two or more
explanatory variables

Alternatively, to solve for the Ej’s, from the first partial derivative:

write

(312) 50 — y - 515] - 5252,

substitute into the other two equations (3.6) and (3.7), and show that b,. b, can be expressed in terms of the

sample covariances and variances

(3.13) 2, 5

Szriyy Szays Szizas Szys Sz,

The resulting expressions for by, by are generalizations of (2.22).|The details are left as an exercise.




3.1 Least squares with two or more
explanatory variables

Next consider the extension to p explanatory variables, with data (y;, z;1, ..., Tip) fori=1,...,n. One

can fit the hyperplane equation y = by +b;z; +- - - + b,z, via least squares by minimizing the sum of squares

of vertical deviations:

(3.16) S(bo,b1,...,bp) = Y (v — bo — bizis — -+ - — bpTip)”.
i=1
Exercise: | With b = (bo,b1,...,b,)T, check that you can follow the same steps with p = 3 explanatory

variables and general p > 2, and get

(3.17) (XTX)b = X"y,



3.1 Least squares with two or more
explanatory variables

Put in matrix form:

n Z Ti1 Z L2 bo Z Yi
(3.8) Sz Yoz Y Tz {)1 = | D zinyi
D Tia Y Ti1Tio S bo > TioYi

x3 <- ¢(2,1,4,6,8,3,12,3,4)
X<-matrix(c(rep(1,n),x1,x2,x3), n, 4)
X

Xt <- t(X)

Xt

matrix(c(n,sum(x1),sum(x2),sum(x3), sum(xl),sum(x172), sum(x1*x2), sum(x1*x3),
sum(x2),sum(x1*x2),sum(x272), sum(x2*x3), sum(x3),sum(x1*x3),sum(x2*x3), sum(x373) ), nrow=4, ncol=4)

Xt%*%X



3.1 Least squares with two or more
explanatory variables

(1 T11 - a:lp\ )
1 zo -+ Zy bo
SR - |t

(3.18) X = 1 zn e oz | b= |-
S b

The dimensions are:

(3.19) dim (X) =
(3.20) dim (X') =
(3.21) dim (X'X) =
(3.22) dim (X'y) =
(3.23) dim (b) =




3.1 Least squares with two or more
explanatory variables

design matrix or data matrix

\ (1 zii .

(3.18) X=|

(XTX)b

/orf)

The system of normal equations

1 xll .-

i oz,




3.1 Least squares with two or more
explanatory variables

As before, Y is a random vector and X is fixed.

(3.36) Yi=Bo+bizin+ -+ Bpxip+€, i=1,...,n, € ~ N(0, 02) independently.

With B8 = (Bo, B1,- - ., B,)T, the least square estimator is

’ i

. B
(3.37) B=| . |=XX)'X"y,

using (3.17) and (3.18).



3.1 Least squares with two or more
explanatory variables

As before, Y is a random vector and X is fixed.

(3.36) Yi=Bo+ Bizin+ -+ Bpzip+e€, i=1,...,n, € ~ N(O, 02) independently.

With 8 = (8o, B, .. ,ﬁp)T, the least square estimator is

2 B T~r\—1vwT
(3.37) B=| . |=XX) Xy,
ﬁ%’ > X <- matrix(c(rep(l,n),x1,x2),nrow=n,ncol=3)
> Xt <- t(X)
using (3.17) and (3.18). > y <- matrix(y, nrow=n, ncol=1)

>

> betahat <- solve(Xt ¥*¥% X) %*% Xt %*% y
> betahat
[,1]

[1,] 23.2660767
[2,] 0.6814606
[3,] -0.2771398
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3.1 Least squares with two or more
explanatory variables

> X <- matrix(c(rep(l,n),x1,x2),nrow=n,ncol=3)
> Xt <- t(X)

>y <- matrix(y, nrow=n, ncol=1)

>

> betahat <- solve(Xt %*% X) %*¥% Xt %*% y

> betahat

[,1]
[1,]1 23.2660767
[2,] ©.6814606
[3,]1 -0.2771398

> yhat<-X¥%*¥%(betahat)
> yhat
[,1]

[1,] 71.94021
[2,] 40.35196
[3,] 50.58716
[4,] 28.00404
[5,] 31.94284
[6,] 29.39922
[7,] 30.88932
[8,] 32.76097
[9,] 14.12427
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For later uses, k is the number of 3’s (here p + 1) and column dimension of X but later it can be much
more than the number of explanatory variables when binary dummy variables are created from categorical

explanatory variables.

-~

e Least squares estimates Bg, Bl, e+ s Bp.

e Fitted or predicted values

(3.39) i =Bo+ Bz +-- + Bpxip, i=1,...,n.
e Residuals
(340) ei=yi—gj,-, z=1n
> k <- dim(X)[2]
> k
[1] 3
>

> betahat <- solve(Xt %*% X) %*¥ Xt %*% y

> c(betahat)

[1] 23.2660767 ©.6814606 -0.2771398

>

> yhat <- X¥%*%¥%betahat

> c(yhat)

[1] 71.94021 40.35196 50.58716 28.00404 31.94284 29.39922 30.88932
[8] 32.76097 14.12427

>

> residuals <- y - yhat

> c(residuals)

[1] -0.9402139 13.6480442 -7.5871581 16.9959612 -10.9428438
[6] -18.3992224 -0.8893247 12.2390298 -4.1242722

>



3.4 Statistical software output for
multiple regression
e Sum of squares of residuals

(3.41) SS(Res) = Z e? = Z(y,— — 4:)>.

e Mean square of residuals or estimated o?:

(3.42) 6°2=(n—-k)! i e2=(n-k)! i(ei —e)?= S;i(f:;) = M S(Res).

1=1

The residual standard deviation (called residual standard error in R output) is the sample standard
deviation of the residuals with a denominator of n — k instead of n — 1. A mathematical explanation

of this denominator is given in Section 3.7. A property of the residuals after a least squares fit is that

(3.43) e=n') e;=0
1=1



3.4 Statistical software output for
multiple regression

e Sum of squares of residuals
(3.41) SS(Res) =Y e? = (y: — %)*.

e Mean square of residuals or estimated o2:

SS(Res)
(n

~%) = MS(Res).

(842)  =(n-k)') el=(n—k)") (e—8) =

The residual standard deviation (called residual standard error in R output) is the sample standard
deviation of the residuals with a denominator of n — k instead of n — 1. A mathematical explanation

of this denominator is given in Section 3.7. A property of the residuals after a least squares fit is that

> SS_res

[1] 1159.452

>

> MS_res <- SS_res/(n-k)
> MS_res

[1; 193.2421

n B . N
(3.43) é::n—ljz:eizzo > SS_res <- sum(residualsA2)
=1



3.4 Statistical software output for
multiple regression

e Total sum of squares for ¥ about its mean, or numerator of sample variance of y:

n

(3.44) SS(Total) = (i —7)* = (n —1)s2.

1=1

e Multiple correlation coefficient or coefficient of determination :

[ 2 def - SS(RCS)
(345) B = 1= 58 Total)
.2 def _ SS(Res)/(n—k) _f
(3-46) sl = = e Total) f(n—1) ~ * §2

R? measures the proportion of total variation in the y-variable about 7 explained by the regression; a
better fitting regression model leads to a smaller value of SS(Res) and larger value of R?. The adjusted
R? makes an adjustment to R? so that it is not always increasing with additional explanatory variables.
Note that R? > 0 but adjR? could be a little negative when the model is a bad fit.



3.4 Statistical software output for
multiple regression

e Total sum of squares for ¥ about its mean, or numera

n

(3.44) SS(Total) = (yi — )

1=1

e Multiple correlation coefficient or coefficient of detern

(3.45) rR? ¥

(3.46) adjR?

1 SS(Res
SS(Totc
1 SS(Res

~ SS(Totc

> SS_Total <- sum((y-ybar)A2)
> SS_Total

[1] 3318

> (n-1)*syA2

[1] 3318

>

>

> R2 <- 1 - SS_Res/SS_Total

> R2

[1] 0.6505569

>

> adjR2 <- 1 - (SS_Res/(n-k))/(SS_Total/(n-1))
> adjR2

[1] 0.5340758

> 1 - MS_Res/syA2

[1] 0.5340758

R? measures the proportion of total variation in the y-variable about 7 explained by the regression; a

better fitting regression model leads to a smaller value of SS(Res) and larger value of R?. The adjusted

R? makes an adjustment to R? so that it is not always increasing with additional explanatory variables.
Note that R? > 0 but adjR? could be a little negative when the model is a bad fit.



multiple Age vs. Money

linear / \
regression reocror il

x —> Age in RESPONSE variable
1 Years ,
Y Cash in pocket
X —— Incomein dollars (5)
2 thousands of S. S |
. ampie, n=9
POPUIahon Population
. P ® x1 x2 y
parameters _ ll\ 5 ac 71
2 _ 2
BO: BlIBZIG ] .i.. 45 49 54
_ 71 76 43
Hypothesis Test _ i‘l‘ 2 37 45
. — . 20 40 21
HO . Bl 0 For parameter B, : : 9 o 11
H1 : Bl 0 95% C.I. = [0.18, 1.18] i 122 30
. 'I‘ 18 10 45
p-value 0.016 i 9 1




3.1 Least squares with two or more
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3.4.1 Properties of R? and 62

When comparing multiple regression equations with different sets of explanatory variables, larger adjR? and
smaller 52 indicate better prediction equations. Note from (3.46), that as 5% decreases, then adjR? increases.

The results below shows what can happen when additional explanatory variables are included.
1. 0 < R% < 1: boundary cases (i) R? = 1 for perfect fit; (ii) R? = 0 for a fit that is not useful.

(i) e; =0 Vi and SS(Res) = 0.
(i) By =+~ =B, =0so that Bo =§ — B1Z1 — -+ — BpZp =, Ui = Po + Bizir + -+ + Bpzip = 7.
ei =Y — Ui =y; —y and SS(Res) = SS(Total).
2. With additional explanatory variables, SS(Res) decreases, R? increases, 62 need not decrease, adjR?

need not increase.

(b) 6%(x1) = SS(Res;z1)/(n—2), 6%(x1,12) = SS(Res; z1,22)/(n—3). With additional explanatory
variables, the numerator of 2 decreases but so does the denominator. If the additional explana-
tory variables have marginal prediction power, then SS(Res) decreases only marginally but the

denominator decreases more and 62 increases in this case.



