Stat 306:
 Finding Relationships in Data. Lecture 6
 Section 2.6

Recap from last lecture 2.5 (continued)

Step 0:
From θ, define estimator, $\hat{\theta}$

Step 1:

Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

```
Step 3:
Define \(\operatorname{se}(\hat{\theta})=\)
estimate of \(\sqrt{\operatorname{Var}(\hat{\Theta})}\)
```

Step 4:
Define
$(1-\alpha) \%$ C.I. $=$
$\hat{\theta} \pm c \times s e(\hat{\theta})$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{E}\left[\mathrm{B}_{0}\right]$	$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	se(b $\left.\mathrm{b}_{0}\right)$	C.I. for β_{0}
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{E}\left[\mathrm{B}_{1}\right]$	$\operatorname{Var}\left[\mathrm{B}_{1}\right]$	$\operatorname{se}\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~s}^{2}$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$\operatorname{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{C} . \mathrm{I}$. $\mu_{Y}(x)$

- Confused about homogeneity vs. non-consistent width of confidence intervals?

Predictions and prediction intervals

Suppose we now want to make a prediction for a new value of x.
Example: Suppose we would like to predict how much money (Y), someone aged 50 years old $(X=50)$ will have.

Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y), someone aged $X=50$ years old will have.
this hypothetical new person aged 50 is sometimes called "an out-of-sample unit with value $x^{* *}$ ", Where $x^{*}=50$.

Our best estimate, also known as the "point prediction", would be equal to $b_{0}+b_{1}(50)=45.1$
> xstar <- 50
> point_prediction <- beta0hat + beta1hat*xstar
> point_prediction
[1] 45.07117

Predictions and prediction intervals

> \# x and n are fíxed values
$>x<-c(82,45,71,22,29,9,12,18,24)$
$>n<-9$
> \# y is a realization of the random variable "Y", i.e. "observed data":
$>y<-c(71,54,43,45,21,11,30,45,10)$
> xbar <- (1/n)*sum(x)
$>$ ybar <- (1/n)*sum(y)
$>\operatorname{sx}<-\operatorname{sqrt}(\operatorname{sum}((x-x b a r) \wedge 2) /(n-1))$
$>$ sy <- sqrt($\operatorname{sum}((y-y b a r) \wedge 2) /(n-1))$
$>$ sxy <- (1/(n-1))*sum((x-xbar)*(y-ybar))
> rxy <- sxy/(sx*sy)
> beta1hat <- rxy*sy/sx
> beta0hat <- ybar-beta1hat*xbar
> residuals <- y - beta0hat - beta1hat*x
> s <- sqrt((1/(n-2))*sum(residuals^2))
> plot($\mathrm{y} \sim x, x \lim =c(0,100)$, ylim=c(0,100), pch=20, cex=3)
> abline(beta0hat, beta1hat)
> xstar <- 50
> point_prediction <- beta0hat + beta1hat*xstar > point_prediction
[1] 45.07117
> lines(x=c(xstar, xstar), c(0,100))

Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y), someone aged $X=50$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error
(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

The difference between our prediction and the truth is the error

Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.

The difference between our prediction and the truth is the error

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2} \tag{2.68}
\end{equation*}
$$

Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

The difference between our prediction and the truth is the error

This has variance $\operatorname{Cov}()$ is equal to 0 , since the two terms are independent.

since $\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]=\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ from (2.66).

Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2}, \tag{2.68}
\end{equation*}
$$

So the (estimated) SE of the prediction error is

$$
\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}
$$

Note this does not decrease to 0 as $n \rightarrow \infty$.

Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2} \tag{2.68}
\end{equation*}
$$

So the (estimated) SE of the prediction error is

$$
\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}
$$

Note this does not decrease to 0 as $n \rightarrow \infty$.
Note that variances of estimators include σ^{2} in their equations. Estimated SEs replace the "population" quantity σ by a sample quantity $\hat{\sigma}$.

Predictions and prediction intervals

Next for the 95% prediction interval for $Y\left(x^{*}\right)$ for an out-of-sample unit with value x^{*}, the point prediction is $\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

$$
\begin{equation*}
\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right) \tag{2.67}
\end{equation*}
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2}, \tag{2.68}
\end{equation*}
$$

since $\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]=\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ from (2.66). So the (estimated) SE of the prediction error is

$$
\begin{equation*}
\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}} \tag{2.69}
\end{equation*}
$$

and this does not decrease to 0 as $n \rightarrow \infty$.
Note that variances of estimators include σ^{2} in their equations. Estimated SEs replace the "population" quantity σ by a sample quantity $\hat{\sigma}$.

Predictions and prediction intervals

Next for the 95% prediction interval for $Y\left(x^{*}\right)$ for an out-of-sample unit with value x^{*}, the point prediction is $\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

$$
\begin{equation*}
\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right) \tag{2.67}
\end{equation*}
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2}, \tag{2.68}
\end{equation*}
$$

since $\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]=\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ from (2.66). So the (estimated) SE of the prediction error is

$$
\begin{equation*}
\mathrm{se}(\mathrm{E})=\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}} \tag{2.69}
\end{equation*}
$$

and this does not decrease to 0 as $n \rightarrow \infty$.
Note that variances of estimators include σ^{2} in their equations. Estimated SEs replace the "population" quantity σ by a sample quantity $\hat{\sigma}$.

Predictions and prediction intervals

Next for the 95% prediction interval for $Y\left(x^{*}\right)$ for an out-of-sample unit with value x^{*}, the point prediction is $\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

$$
\begin{equation*}
\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right) \tag{2.67}
\end{equation*}
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2}, \tag{2.68}
\end{equation*}
$$

since $\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]=\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ from (2.66). So the (estimated) SE of the prediction error is

$$
\begin{equation*}
\operatorname{se}(\mathrm{E})=\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}} \tag{2.69}
\end{equation*}
$$

and this does not decrease to 0 as $n \rightarrow \infty$.
Note that variances of estimators include σ^{2} in their equations. Estimated SEs replace the "population" quantity σ by a sample quantity $\hat{\sigma}$.

The 95% prediction interval for $Y\left(x^{*}\right)$ for a unit (not in sample) with value x^{*} :

$$
\begin{equation*}
\hat{Y}\left(x^{*}\right) \pm t_{n-2,0.975} \times \operatorname{se}(E), \hat{Y}\left(x^{*}\right)=\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}=\hat{\mu}_{Y}\left(x^{*}\right) \tag{2.44}
\end{equation*}
$$

where $E=\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{\mu}_{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{\mu}_{Y}\left(x^{*}\right)-\beta_{0}-\beta_{1} x^{*}-\epsilon\left(x^{*}\right)$ is the prediction error.

Predictions and prediction intervals

> points(xstar, point_prediction, col="pink", pch=18, cex=3)

Predictions and prediction intervals

```
> # 95% prediction interval:
> lowerPI <- point_prediction - qt(0.975,n-2) * s * sqrt(1/n + 1 + ((xstar-xbar)^2)/((n-1)*sx^2))
> upperPI <- point_prediction + qt(0.975,n-2) * s * sqrt(1/n + 1 + ((xstar-xbar)^2)/((n-1)*sx^2))
c(lowerPI,upperPI)
[1] 5.61226 84.53007
> lines(x=c(xstar,xstar),y=c(lowerPI,upperPI), col="darkviolet",lwd=15)
```


Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

$b_{0}=17.7$
$b_{1}=0.55$
$\mathrm{s}=15.5$
$R^{2}=0.49$

Results: We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of \$0.55 (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.

se(subpopulation mean) VS. se(prediction error)

Subpopulation mean:

$$
s e\left(\hat{\mu}_{Y}(x)\right)=\hat{\sigma} \times \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{(n-1) s_{x}^{2}}}
$$

Whereas, the (estimated) SE of the prediction error is:

$$
\begin{equation*}
\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}} \tag{2.69}
\end{equation*}
$$

and this does not decrease to 0 as $n \rightarrow \infty$.

2.6 Explanation of Student t quantiles in the interval estimates

2.6.1. History lesson about the t-test
2.6.2. Three important things to know about a normal random variable
2.6.3 Estimators as Random Variables (one more time!)
2.6.4 Explanation of Student t quantiles

2.6 Explanation of Student t quantiles in the interval estimates

2.6.1. History lesson about the t-test
2.6.2. Three important things to know about a normal random variable
2.6.3 Estimators as Random Variables (one more time!)
2.6.4 Explanation of Student t quantiles

2.6.1. History lesson about the t-test

Student is the publication pseudonym for William Gosset, who developed methods for inference of means for small samples while working at Guinness Brewery (Ireland) in early 1900s.
https://en.wikipedia.org/wiki/William_Sealy_Gosset

2.6 Explanation of Student t quantiles in the interval estimates

2.6.1. History lesson about the t-test
2.6.2. Three important things to know about a normal random variable
2.6.3 Estimators as Random Variables (one more time!)
2.6.4 Explanation of Student t quantiles

2.6.2. Three important things to know about a normal random variable

- Thing 1:
- Linear combinations of independent normal random variables also have normal distributions! (see Appendix B)

2.6.2. Three important things to know about a normal random variable

- Thing 1:
- Linear combinations of independent normal random variables also have normal distributions! (see Appendix B)

For example:
Let:
W_{1} be a normal random variable

Then:

$$
\begin{aligned}
& W_{3}=a W_{1}+b W_{2} \text { is a normal r.v. } \\
& \text { for any numbers } a \text { and } b .
\end{aligned}
$$

2.6.2. Three important things to know about a normal random variable

- Thing 2:
- A normal random variable can be converted to a standard normal random variable.
$W \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
\frac{W-\mu}{\sigma} \sim \operatorname{Normal}(0,1)
$$

$$
\operatorname{Pr}\left(-1.96<\frac{W-\mu}{\sigma}<1.96\right)=0.95
$$

$$
\operatorname{Pr}\left(-z_{1-\frac{\alpha}{2}}<\frac{W-\mu}{\sigma}<z_{1-\frac{\alpha}{2}}\right)=1-\alpha
$$

2.6.2. Three important things to know about a normal random variable

- Thing 2:
- A normal random variable can be converted to a standard normal random variable.
$W \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$
$\operatorname{Pr}\left(-z_{1-\frac{\alpha}{2}}<\frac{W-\mu}{\sigma}<z_{1-\frac{\alpha}{2}}\right)=1-\alpha$
$\operatorname{Pr}\left(W-z_{1-\frac{\alpha}{2}} \sigma<\mu<W+z_{1-\frac{\alpha}{2}} \sigma\right)=1-\alpha$
For example, with $\alpha=0.05$:
$\operatorname{Pr}(W-1.96 \sigma<\mu<W+1.96 \sigma)=0.95$

2.6.2. Three important things to know about a normal random variable

- Thing 3:
- If the variance is unknown, we must use the t distribution.

$$
\begin{aligned}
& \frac{W-\mu}{\hat{\sigma}} \sim t_{n-2} \\
& \operatorname{Pr}\left(-z_{1-\frac{\alpha}{2}}<\frac{W-\mu}{\hat{\sigma}}<z_{1-\frac{\alpha}{2}}\right) \neq 1-\alpha \\
& \operatorname{Pr}\left(-t_{n-2,1-\frac{\alpha}{2}}<\frac{W-\mu}{\hat{\sigma}}<t_{n-2,1-\frac{\alpha}{2}}\right)=1-\alpha \\
& \operatorname{Pr}\left(-t_{n-2,1-\frac{\alpha}{2}}<\frac{W-\mu}{\hat{\sigma}}<t_{n-2,1-\frac{\alpha}{2}}\right)=0.95 \\
& \text { for example, with } n=9: \\
& \operatorname{Pr}\left(-2.26<\frac{W-\mu}{\hat{\sigma}}<2.26\right)=0.95
\end{aligned}
$$

2.6.2. Three important things to know about a normal random variable

- Thing 3:
- If the variance is unknown, we must use the t distribution.
$\frac{W-\mu}{\hat{\sigma}} \sim t_{n-2}$
$\operatorname{Pr}\left(W-t_{n-2,1-\frac{\alpha}{2}} \hat{\sigma}<\mu<W+t_{n-2,1-\frac{\alpha}{2}} \hat{\sigma}\right)=1-\alpha$
for example, with $n=9$:
$\operatorname{Pr}(W-2.26 \hat{\sigma}<\mu<W+2.26 \hat{\sigma})=0.95$

2.6 Explanation of Student t quantiles in the interval estimates

2.6.1. History lesson about the t-test
2.6.2. Three important things to know about a normal random variable
2.6.3 Estimators as Random Variables (one more time!)
2.6.4 Explanation of Student t quantiles

Step 0:
From θ, define estimator, $\hat{\theta}$

Step 1:

Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

```
Step 3:
Define \(\operatorname{se}(\hat{\theta})=\)
estimate of \(\sqrt{\operatorname{Var}(\hat{\Theta})}\)
```

Step 4:
Define
$(1-\alpha) \%$ C.I. $=$
$\hat{\theta} \pm c \times s e(\hat{\theta})$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{E}\left[\mathrm{B}_{0}\right]$	$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	se(b $\left.\mathrm{b}_{0}\right)$	C.I. for β_{0}
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{E}\left[\mathrm{B}_{1}\right]$	$\operatorname{Var}\left[\mathrm{B}_{1}\right]$	$\operatorname{se}\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~s}^{2}$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$\operatorname{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{C} . \mathrm{I}$. $\mu_{Y}(x)$

Recall:

$$
B_{1}=\sum_{i=1}^{n} a_{i} Y_{i}, \text { where: } a_{i}=\frac{\left(x_{i}-\bar{x}\right)}{(n-1) s_{x}^{2}}
$$

and:

$$
\begin{aligned}
& \text { and: } \quad \begin{aligned}
\mathrm{E}\left(\hat{B}_{1}\right) & =\sum^{n} a_{i} \mathrm{E}\left(Y_{i}\right)=\sum_{i=1}^{n} a_{i}\left(\beta_{0}+\beta_{1} x_{i}\right) \\
& =\beta_{1},
\end{aligned} \\
& \text { and: } \quad \operatorname{Var}\left(\hat{B}_{1}\right)=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}
\end{aligned}
$$

Since B_{1} is a linear combination of the $\mathrm{Y}_{\mathrm{i}} \mathrm{s}$ (Normal RVs), then (with Thing 1):

$$
\hat{B}_{1} \sim N\left(\beta_{1}, \sigma_{\hat{\beta}_{1}}^{2}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}\right),
$$

$$
\frac{\hat{B}_{1}-\beta_{1}}{\sigma_{\hat{\beta}_{1}}} \sim N(0,1)
$$

Recall:

$$
\begin{aligned}
E\left[B_{0}\right] & =E\left[\bar{Y}-B_{1} \bar{X}\right] \\
& =\frac{1}{n} E\left[\sum_{i=1}^{n} Y_{i}\right]-\beta_{1} \bar{X} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\beta_{0}+\beta_{1} X_{i}\right)-\beta_{1} \bar{X} \\
& =\beta_{0}+\frac{1}{n} \sum_{i=1}^{n} \beta_{1} X_{i}-\beta_{1} \bar{X} \\
& =\beta_{0}+\beta_{1} \frac{1}{n} \sum_{i=1}^{n} X_{i}-\beta_{1} \bar{X} \\
& =\beta_{0}+\beta_{1} \bar{X}-\beta_{1} \bar{X} \\
& =\beta_{0}
\end{aligned}
$$

Also:

$$
\begin{aligned}
& \operatorname{Var}\left(B_{0}\right)=\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i} / n\right)+\bar{X}^{2} \operatorname{Var}\left(B_{1}\right) \\
& \quad=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)
\end{aligned}
$$

For the intercept, we can, again, make use of the fact that B_{0} is a linear combination of normal random variables (Thing 1):
$B_{0} \sim N\left[\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)\right]$

Step 1:

Consider the sample
estimator, $\hat{\theta}$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	
β_{0}	b_{0}	B_{0}	$B_{0} \sim N\left[\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)\right]$
β_{1}	b_{1}	B_{1}	$\hat{B}_{1} \sim N\left(\beta_{1}, \sigma_{\hat{\beta}_{1}}^{2}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}\right)$
σ^{2}	s^{2}	S^{2}	$S^{2} / \sigma^{2} \sim \chi_{n-2}^{2}$
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mu_{Y}(x) \sim N \operatorname{Normal}\left(\beta_{0}+\beta_{1} x, \sigma^{2}\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\left[(n-1) s_{x}^{2}\right]}\right)\right)$

2.6 Explanation of Student t quantiles in the interval estimates

2.6.1. History lesson about the t-test
2.6.2. Three important things to know about a normal random variable
2.6.3 Estimators as Random Variables (one more time!)
2.6.4 Explanation of Student t quantiles

Step 0:

From θ, define estimator, $\hat{\theta}$

Step 1:

Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~s}^{2}$
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$

With Thing 2, we have:

$$
\frac{B_{0}-\beta_{0}}{\sqrt{\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}} \sim N(0,1)
$$

But we do not know the variance. We only have an estimate of the variance, so (with Thing 3):
$\frac{B_{0}-\beta_{0}}{S E\left(B_{0}\right)} \sim t_{n-2}$

And therefore:
95% C.I. for $\beta_{0}=$

$$
\left.\begin{array}{l}
{\left[\bar{y}-b_{1} \bar{X}-t_{n-2,0.975} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)}\right.} \\
\quad \bar{y}-b_{1} \bar{X}+t_{n-2,0.975} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)}
\end{array}\right]
$$

2.6.4 Explanation of Student t quantiles

2.6.4 Explanation of Student t quantiles

Estimator as a Random Variable
B_{0}
$\mathrm{~B}_{1}$
$\mathrm{~S}^{2}$
$\left(\hat{\mu}_{Y}(x)\right)$

$$
\hat{B}_{1} \sim N\left(\beta_{1}, \sigma_{\hat{\beta}_{1}}^{2}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}\right)
$$

With Thing 2, we have:

$$
\frac{\hat{B}_{1}-\beta_{1}}{\sigma_{\hat{\beta}_{1}}} \sim N(0,1)
$$

But we do not know the variance, so with Thing 3, we have:

$$
\frac{B_{1}-\beta_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

And therefore:

$$
\operatorname{Pr}\left(b_{1}-t_{n-2,1-\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{(n-1)} s_{x}}<\beta_{1}<b_{1}+t_{n-2,1-\frac{\alpha}{2}} \frac{\hat{\sigma}}{\sqrt{(n-1)} s_{x}}\right)=1-\alpha
$$

with $\alpha=0.05$:

$$
\operatorname{Pr}\left(b_{1}-t_{n-2,0.975} \frac{\hat{\sigma}}{\sqrt{(n-1)} s_{x}}<\beta_{1}<b_{1}+t_{n-2,0.975} \frac{\hat{\sigma}}{\sqrt{(n-1)} s_{x}}\right)=0.95
$$

2.6.4 Explanation of Student t quantiles

Estimator as a Random Variable
B_{0}
$\mathrm{~B}_{1}$
$\mathrm{~S}^{2}$
$\left(\hat{\mu}_{Y}(x)\right)$

With Thing 1, we have:

$$
\hat{B}_{1} \sim N\left(\beta_{1}, \sigma_{\hat{\beta}_{1}}^{2}=\frac{\sigma^{2}}{(n-1) s_{x}^{2}}\right)
$$

With Thing 2, we have:

$$
\frac{\hat{B}_{1}-\beta_{1}}{\sigma_{\hat{\beta}_{1}}} \sim N(0,1)
$$

But we do not know the variance, so with Thing 3, we have:

$$
\frac{B_{1}-\beta_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

And therefore:
95\% C.I. for $\beta_{1}=\left[b_{1}-t_{n-2,0.975} \frac{\hat{\sigma}}{\sqrt{n-1} s_{x}}, \quad b_{1}+t_{n-2,0.975} \frac{\hat{\sigma}}{\sqrt{n-1} s_{x}}\right]$

$$
\text { where: } \quad b_{1}=r_{x y} \frac{s_{y}}{s_{x}} \quad, \quad \hat{\sigma}=s=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}}
$$

2.6.4 Explanation of Student t quantiles

Estimator as a Random Variable
B_{0}
$\mathrm{~B}_{1}$
$\mathrm{~S}^{2}$
$\left(\hat{\mu}_{Y}(x)\right)$

With Thing 1, we have:
$B_{0} \sim N\left[\beta_{0}, \sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)\right]$
With Thing 2, we have:

$$
\frac{B_{0}-\beta_{0}}{\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)} \sim N[0,1]
$$

But we do not know the variance, so with Thing 3, we have:

$$
\frac{B_{0}-\beta_{0}}{S E\left(B_{0}\right)} \sim t_{n-2}
$$

And therefore:

$$
\operatorname{Pr}\left(b_{0}-t_{n-2,1-\frac{\alpha}{2}} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}<\beta_{0}<b_{0}+t_{n-2,1-\frac{\alpha}{2}} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}\right)=1-\alpha
$$

with $\alpha=0.05$:

$$
\operatorname{Pr}\left(b_{0}-t_{n-2,0.975} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}<\beta_{0}<b_{0}+t_{n-2,0.975} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}\right)=0.95
$$

2.6.4 Explanation of Student t quantiles

Estimator as a Random Variable
B_{0}
$\mathrm{~B}_{1}$
$\mathrm{~S}^{2}$
$\left(\hat{\mu}_{Y}(x)\right)$

And therefore:
95% C.I. for $\beta_{0}=$

$$
\left.\begin{array}{c}
{\left[\bar{y}-b_{1} \bar{x}-t_{n-2,0.975} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}\right.} \\
\bar{y}-b_{1} \bar{x}+t_{n-2,0.975} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)}
\end{array}\right]
$$

2.6.4 Explanation of Student t quantiles

Estimator as a Random Variable
B_{0}
$\mathrm{~B}_{1}$
$\mathrm{~S}^{2}$
$\left(\hat{\mu}_{Y}(x)\right)$

With Thing 1, we have:
$\mu_{Y}(x) \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} x, \sigma^{2}\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\left[(n-1) s_{x}^{2}\right]}\right)\right)$
With Thing 2, we have...

But we do not know the variance, so with Thing 3, we have...

And therefore:

The 95% confidence interval for subpopulation mean $\mu_{Y}(x)=\beta_{0}+\beta_{1} x$ is

$$
\hat{\mu}_{Y}(x) \pm t_{n-2,0.975} \times \operatorname{se}\left(\hat{\mu}_{Y}(x)\right),
$$

where:

$$
\begin{aligned}
& s e\left(\hat{\mu}_{Y}(x)\right)=\hat{\sigma} \times \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{(n-1) s_{x}^{2}}} \\
& \hat{\mu}_{Y}(x)=\hat{\beta}_{0}+\hat{\beta}_{1} x . \\
& \hat{\sigma}=s=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}}
\end{aligned}
$$

2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_{0}: \beta_{1}=0$. (2.76) implies that the null distribution of $\hat{B}_{1} / S E\left(\hat{B}_{1}\right)$ is t_{n-2}. For the data version, $\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)$ is the standardized version of $\hat{\beta}_{1}$; it is invariant to scale changes of the x and y variables (because a scale change affect the SE in the same way as $\left.\hat{\beta}_{1}\right) .\left|\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)\right|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_{0}: \beta_{1}=0$. (2.76) implies that the null distribution of $\hat{B}_{1} / S E\left(\hat{B}_{1}\right)$ is t_{n-2}. For the data version, $\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)$ is the standardized version of $\hat{\beta}_{1}$; it is invariant to scale changes of the x and y variables (because a scale change affect the SE in the same way as $\left.\hat{\beta}_{1}\right) .\left|\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)\right|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

We have:

$$
\frac{B_{1}-\beta_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_{0}: \beta_{1}=0$. (2.76) implies that the null distribution of $\hat{B}_{1} / S E\left(\hat{B}_{1}\right)$ is t_{n-2}. For the data version, $\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)$ is the standardized version of $\hat{\beta}_{1}$; it is invariant to scale changes of the x and y variables (because a scale change affect the SE in the same way as $\left.\hat{\beta}_{1}\right) .\left|\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)\right|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

Hypothesis Test
"Null" hypothesis
$H_{0}: \beta_{1}=0<$ $\mathrm{H}_{1}: \beta_{1} \neq 0<$
"Alternative" hypothesis
We have:

$$
\frac{B_{1}-B_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_{0}: \beta_{1}=0$. (2.76) implies that the null distribution of $\hat{B}_{1} / S E\left(\hat{B}_{1}\right)$ is t_{n-2}. For the data version, $\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)$ is the standardized version of $\hat{\beta}_{1}$; it is invariant to scale changes of the x and y variables (because a scale change affect the SE in the same way as $\left.\hat{\beta}_{1}\right) .\left|\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)\right|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

Hypothesis Test
 $H_{1}: \beta_{1} \neq 0<$
"Alternative" hypothesis
We have:

$$
\frac{B_{1}-\beta_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

Therefore, "under the null", we have:

$$
\frac{B_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_{0}: \beta_{1}=0$. (2.76) implies that the null distribution of $\hat{B}_{1} / S E\left(\hat{B}_{1}\right)$ is t_{n-2}. For the data version, $\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)$ is the standardized version of $\hat{\beta}_{1}$; it is invariant to scale changes of the x and y variables (because a scale change affect the SE in the same way as $\left.\hat{\beta}_{1}\right) .\left|\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)\right|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

Even if we decide to record "Age" (x) in months and "Money" (Y) in pennies, "under the null", we still have:

$$
\frac{B_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_{0}: \beta_{1}=0$. (2.76) implies that the null distribution of $\hat{B}_{1} / S E\left(\hat{B}_{1}\right)$ is t_{n-2}. For the data version, $\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)$ is the standardized version of $\hat{\beta}_{1}$; it is invariant to scale changes of the x and y variables (because a scale change affect the SE in the same way as $\left.\hat{\beta}_{1}\right) .\left|\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)\right|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

Even if we decide to record "Age" (x) in months and "Money" (Y) in pennies, "under the null", we still have:

$$
\frac{B_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

and:
t-statistic $=\frac{\hat{\beta}_{1}}{S E\left(\hat{\beta}_{1}\right)}$

Therefore...

If β_{1} (the slope) was actually equal to 0 , it would be very unlikely that the absolute t-stat would be very large.

```
> x <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
> y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10)
> n <- 9
> xbar <- (1/n)*sum(x)
> sx <- sqrt( sum((x-xbar)^2)/(n-1) )
> ybar <- (1/n)*sum(y)
> sy <- sqrt( sum((y-ybar)^2)/(n-1) )
> sxy <- (1/(n-1))*sum((x-xbar)*(y-ybar))
> rxy <- sxy/(sx*sy)
> b0_hat<-ybar-b1_hat*xbar
> b1_hat <- rxy*sy/sx
> residuals <- y - b0_hat - b1_hat*x
> s <- sqrt( (1/(n-2))*sum(residuals^2) )
> S
[1] 15.5308
> SE_b1 <- s/(sqrt(n-1)*sx)
> SE_b1
[1] 0.2108794
> tstat_b1 <- b1_hat/SE_b1
> tstat_b1
[1] 2.599209
```


2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_{0}: \beta_{1}=0$. (2.76) implies that the null distribution of $\hat{B}_{1} / S E\left(\hat{B}_{1}\right)$ is t_{n-2}. For the data version, $\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)$ is the standardized version of $\hat{\beta}_{1}$; it is invariant to scale changes of the x and y variables (because a scale change affect the SE in the same way as $\left.\hat{\beta}_{1}\right) .\left|\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)\right|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

Even if we decide to record "Age" (x) in months and "Money" (Y) in pennies, "under the null", we still have:

$$
\frac{B_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

and:
t-statistic $=\frac{\hat{\beta}_{1}}{S E\left(\hat{\beta}_{1}\right)}$

Therefore...

If β_{1} (the slope) was actually equal to 0 , it would be very unlikely that the absolute t -stat would be very large.

```
> b1_hat <- rxy*sy/sx
> b1_hat
[1] 0.5481195
> residuals <- y - b0_hat - b1_hat*x
> s <- sqrt( (1/(n-2))*sum(residuals^2) )
> S
[1] 15.5308
> SE_b1 <- s/(sqrt(n-1)*sx)
> SE_b1
[1] 0.2108794
> tstat_b1 <- b1_hat/SE_b1
> tstat_b1
[1] 2.599209
>
> # How unlikely would it be to obtain
> # a value this large (or larger) if the
> # null was true (i.e. beta_1 = 0)?
>
> 2*pt(abs(tstat_b1), n-2, lower=FALSE)
[1] 0.03546599
```


2.6.4 Explanation of Student t quantiles

```
> summary(lm(y~x))
```

Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x}$)

Residuals:				
Min	$1 Q$	Median	$3 Q$	Max
-20.820	-12.561	5.757	11.669	17.469

```
> b1_hat <- rxy*sy/sx
> b1_hat
[1] 0.5481195
> residuals <- y - b0_hat - b1_hat*x
> s <- sqrt( (1/(n-2))*sum(residuals^2) )
> S
[1] 15.5308
> SE_b1 <- s/(sqrt(n-1)*sx)
> SE_b1
[1] 0.2108794
> tstat_b1 <- b1_hat/SE_b1
> tstat_b1
[1] 2.599209
>
> # How unlikely would it be to obtain
> # a value this large (or larger) if the
> # null was true (i.e. beta_1 = 0)?
>
> 2*pt(abs(tstat_b1), n-2, lower=FALSE)
[1] 0.03546599
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	17.6652	8.9579	1.972	0.0892
x	0.5481	0.2109	2.599	$0.0355 *$

Signif. codes: 0 ‘***’ 0.001 ‘**' 0.01 ‘*’ 0.05 '.’ 0.1 ' ’ 1
Residual standard error: 15.53 on 7 degrees of freedom
Multiple R-squared: 0.4911, Adjusted R-squared: 0.4184
F-statistic: 6.756 on 1 and 7 DF, p-value: 0.03547

2.6.4 Explanation of Student t quantiles

```
> b0_hat<-ybar-b1_hat*xbar
> b0_hat
[1] 17.66519
> residuals <- y - b0_hat - b1_hat*x
> s <- sqrt( (1/(n-2))*sum(residuals^2) )
> S
[1] 15.5308
> SE_b0 <- s*sqrt( 1/n + ( (xbar^2)/( sum((x-xbar)^2)) ) )
> SE_b0
[1] 8.957892
> tstat_b0 <- b0_hat/SE_b0
> tstat_b0
[1] 1.972026
>
> # How unlikely would it be to obtain
> # a value this large (or larger) if the
> # null was true (i.e. beta_0 = 0)?
>
> 2*pt(abs(tstat_b0), n-2, lower=FALSE)
[1] 0.08922444
Coefficients:
Estimate Std. Error t value Pr(>|t|)
Call:
lm(formula = y ~ x)
Residuals: 1Q Median 3Q Max
-20.820-12.561 5.757 11.669 17.469
```



```
Signif. codes: 0 '***` 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.53 on 7 degrees of freedom
Multiple R-squared: 0.4911, Adjusted R-squared: 0.4184
F-statistic: 6.756 on 1 and 7 DF, p-value: 0.03547
```


2.6.4 Explanation of Student t quantiles

Interpretation for a confidence interval: be careful in what is correct and incorrect usage.
A confidence interval consists of an interval estimate of a population parameter (Greek letter). So we can say 95% confidence interval for β_{1} but not 95% confidence interval for $\hat{\beta}_{1}$.

2.6.4 Explanation of Student t quantiles

Interpretation for a confidence interval: be careful in what is correct and incorrect usage.
A confidence interval consists of an interval estimate of a population parameter (Greek letter). So we can say 95% confidence interval for β_{1} but not 95% confidence interval for $\hat{\beta}_{1}$.
The interval (2.79) has 95% probability content if \hat{B}_{1} and $\hat{S}=\hat{\sigma}$ are considered as random variables. When $\hat{\beta}_{1}$ and $\hat{\sigma}$ are computed from data values, the interval (2.79) is called a 95% confidence interval.

2.6.4 Explanation of Student t quantiles

Interpretation for a confidence interval: be careful in what is correct and incorrect usage.
A confidence interval consists of an interval estimate of a population parameter (Greek letter). So we can say 95% confidence interval for β_{1} but not 95% confidence interval for $\hat{\beta}_{1}$.
The interval (2.79) has 95% probability content if \hat{B}_{1} and $\hat{S}=\hat{\sigma}$ are considered as random variables. When $\hat{\beta}_{1}$ and $\hat{\sigma}$ are computed from data values, the interval (2.79) is called a 95% confidence interval. For example, the 95% confidence interval for the Merck beta is $0.871 \pm 0.497=(0.374,1.368)$.
With numbers (not random variables) in the interval, the interval either contains the true β_{1} or it doesn't (and probability is 1 or 0). This is the reason why a numerical interval of most plausible values for a population parameter is called a confidence interval. Probability content of an interval containing a quantity can only be considered if the endpoints of the interval are considered as random variables and not a specific numbers computed from data.

2.6.4 Explanation of Student t quantiles

Explanation of Thing 3:

Definition of a t_{ν} random variable.

Let $Z \sim N(0,1)$ and let $W \sim \chi_{\nu}^{2}$ (chi-square distribution with ν degrees of freedom, this has a rightskewed density on the positive real line). The random variables Z and W are mutually independent. Then the definition of a t_{ν} random variables from a standard normal random variable and a chi-square random variable is as follows:

$$
T=\frac{Z}{\sqrt{W / \nu}} \sim \mathrm{t}_{\nu}
$$

or T has a Student t_{ν} distribution. For this to apply above to $\frac{\hat{B}_{1}-\beta_{1}}{S E\left(\hat{B}_{1}\right)}$ in (2.76), write

$$
\frac{\hat{B}_{1}-\beta_{1}}{S E\left(\hat{B}_{1}\right)}=\frac{\left(\hat{B}_{1}-\beta_{1}\right) / \sigma_{\hat{\beta}_{1}}}{\sqrt{S E^{2}\left(\hat{B}_{1}\right) / \sigma_{\hat{\beta}_{1}}^{2}}} .
$$

Since $Z=\left(\hat{B}_{1}-\beta_{1}\right) / \sigma_{\hat{\beta}_{1}} \sim N(0,1)$, to get a t_{n-2} distribution, it is necessary to show that $S E^{2}\left(\hat{B}_{1}\right)$ (as a random variable) is independent of \hat{B}_{1}, and that $W=(n-2) S E^{2}\left(\hat{B}_{1}\right) / \sigma_{\hat{\beta}_{1}}^{2} \sim \chi_{n-2}^{2}$.

linear

Age vs. Money

regression

PREDICTOR variable

$$
x \longrightarrow \longrightarrow \begin{aligned}
& \text { Years in }
\end{aligned}
$$

RESPONSE variable

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
H_{0}: \beta_{1}=0
$$

$$
H_{1}: \beta_{1} \neq 0
$$

Sample, $\mathrm{n}=9$
Sample statistics
$b_{0}=17.7$
$b_{1}=0.55$
$s=15.5$
$R^{2}=0.49$

For parameter $\beta_{1}:$
95% C.I. $=[0.05,1.05]$
p-value $=0.036$

