Stat 306:

Finding Relationships in Data.

Lecture 6
Section 2.6



Recap from last lecture
2.5 (continued)



Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 9, asa
random variable ©

Step 2:
Determine

E[ @] (to confirm it’s unbiased)

Var[©] (to calculate se)

Step 3:
Define
se(6 )=

estimate of \/ Var (©

Step 4:
Define
(1-0)% C.I. =

G:tcxse
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Predictions and prediction intervals

Suppose we now want to make a prediction for a new value of x.

Example: Suppose we would like to predict how much money (Y),
someone aged 50 years old (X=50) will have.
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Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y),
someone aged X=50 years old will have.

this hypothetical new person aged 50 is sometimes called “an out-of-sample unit with value x*”,
Where x*=50.

Our best estimate, also known as the “point prediction”, would be equal to b, +b,(50) = 45.1

> xstar <- 50

> point_prediction <- beta@hat + betalhat*xstar
> point_prediction

[1] 45.07117



Predictions and prediction intervals
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[1] 45.07117

>

- -

# x aﬁd n‘are F{xed vaiﬁeg ’
x <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
n<-9

# y 1s a realization of the random variable "Y", 1i.e.
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 19)

xbar <- (1/n)*sum(x)

ybar <- (1/n)*sum(y)

sx <- sgrt( sum((x-xbar)A2)/(n-1) )

sy <- sqrt( sum((y-ybar)A2)/(n-1) )

sxy <- (1/(n-1))*sum((x-xbar)*(y-ybar))

rxy <- sxy/(sx*sy)

betalhat <- rxy*sy/sx

beta®hat <- ybar-betalhat*xbar

residuals <- y - beta@hat - betalhat*x

s <- sgrt( (1/(n-2))*sum(residualsA2))

plot(y~x, x1lim=c(0,100), ylim=c(0,100), pch=20, cex=3)
abline(beta@hat, betalhat)
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xstar <- 50
point_prediction <- beta@hat + betalhat*xstar
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lines(x=c(xstar, xstar),c(0,100))
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Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y),
someone aged X=50 years old will have.

Y (z*) = By + Byz* with error
(2.67) Y(z*) =Y (z*) = By + Biz* — [Bo + Biz* + e(z)]

= (By — Bo) + (B — B1)z* — €(z*)



Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Our prediction
. A 1A / The truth
Y (z*) = By + Byz* with error /
(2.67) Y(z*)—Y(z*) = Bo + Biz* — [Bo + Biz* + e(z*)]

= (By — Bo) + (B — B1)z* — €(z*)

The difference between our prediction and the truth is the error



Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Our prediction
. A 1A / The truth
Y (z*) = By + Byz* with error /
(2.67) Y(z*)—Y(z*) = Bo+ Biz* — [Bo + frz* + e(z*)]

= (By — Bo) + (B — B1)z* — €(z*)

The difference between our prediction and the truth is the error

This has variance

A A . o of —1, (@—7)? 2
(2.68) Var [(Bg — Bo) + (By — B1)x*] + Var [e(z*)] = o {n — (n—1)s2] } + 0%,




Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Our prediction
. A 1A / The truth
Y (z*) = By + Byz* with error /
(2.67) Y(z*)—Y(z*) = Bo+ Biz* — [Bo + frz* + e(z*)]

= (By — Bo) + (B — B1)z* — €(z*)

The difference between our prediction and the truth is the error

Cov() is equal to 0, since the two

This has variance terms are independent.
268  Var[(Bo— o) + (B - Bi)a"] + Var[e(a")] = 0t + (T DY o
. ar 0 0 1 1)T ar (e\T =0 N [(n_ 1)8%] g,

e

since Var [(Bo — o) + (B1 — B1)z*] = Var [y (z*)] from (2.66).



Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Our prediction
. A : / The truth
Y (z*) = By + Byz* with error \/
(2.67) Y (z*) =Y (z*) = Bo + Biz* — [Bo + Brz* + €(z")]

= (By — Bo) + (B1 — B1)z* — €(z*)

This has variance

(2.68) Var [(Bo — Bo) + (Bl — B1)z*] + Var [e(z*)] = 02{71_1 +

So the (estimated) SE of the prediction error is

1 * _ )2
&x\/1+—+($ 7) .

n (n—1)s2°

Note this does not decrease to 0 as n — oo.



Predictions and prediction intervals

Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Our prediction
. A : / The truth
Y (z*) = By + Byz* with error \/
(2.67) Y (z*) =Y (z*) = Bo + Biz* — [Bo + Brz* + €(z")]

= (By — Bo) + (B1 — B1)z* — €(z*)
This has variance

*

> » * *\1 __ 2 -1 (:17 _5)2 2
(2.68) Var [(Bo — fo) + (B1 — B1)z*] + Var [e(z")] = 0*{n~" + (=P }+o?,

So the (estimated) SE of the prediction error is

1 * __ )2
&><\/1+—+u
n

(n—1)s2

Note this does not decrease to 0 as n — oo.

Note that variances of estimators include o2 in their equations. Estimated SEs replace the “population”

quantity o by a sample quantity &.



Predictions and prediction intervals

Next for the 95% prediction interval for Y (z*) for an out-of-sample unit with value z*, the point prediction
is Y (2*) = By + Byz* with error

(2.67) Y (z*) —Y(z*) = By + Biz* — [Bo + Biz* + e(z*)] = (Bo — Bo) + (B1 — p1)z* — e(z*).
This has variance

A £ * W _ 2 -1 (z* —5)2 2
(2.68) Var [(By — Bo) + (B1 — 81)z*] + Var [e(z*)] = o {n + m} + 07,

since Var [(Bo — B0) + (B1 — B1)z*] = Var [y (z*)] from (2.66). So the (estimated) SE of the prediction error

1S

2.69 14+ -4+ —=
(269) ax\/+n+(n—1)sg’

and this does not decrease to 0 as n — .
Note that variances of estimators include o2 in their equations. Estimated SEs replace the “population”

quantity o by a sample quantity &.



Predictions and prediction intervals

Next for the 95% prediction interval for Y (z*) for an out-of-sample unit with value z*, the point prediction
is Y (2*) = By + Byz* with error

(2.67) Y (z*) —Y(z*) = By + Biz* — [Bo + Biz* + e(z*)] = (Bo — Bo) + (B1 — p1)z* — e(z*).
This has variance

A £ * W _ 2 -1 (z* —5)2 2
(2.68) Var [(By — Bo) + (B1 — 81)z*] + Var [e(z*)] = o {n + m} + 07,

since Var [(Bo — B0) + (B1 — B1)z*] = Var [y (z*)] from (2.66). So the (estimated) SE of the prediction error

1S

(e~ 2)°

HCES

S

(2.69) se(E)= & x \/1 +

and this does not decrease to 0 as n — .
Note that variances of estimators include o2 in their equations. Estimated SEs replace the “population”

quantity o by a sample quantity &.



Predictions and prediction intervals

Next for the 95% prediction interval for Y (z*) for an out-of-sample unit with value z*, the point prediction
is Y (2*) = By + Byz* with error

(2.67) Y (z*) —Y(z*) = By + Biz* — [Bo + Biz* + e(z*)] = (Bo — Bo) + (B1 — p1)z* — e(z*).

This has variance

(@ -2
(n = 1)s2]

since Var [(Bo — B0) + (B1 — B1)z*] = Var [y (z*)] from (2.66). So the (estimated) SE of the prediction error

1S

(2.68) Var [(Bo — fo) + (B1 — B1)a"] + Var [e(z*)] = 0*{n~1 + }+o?,

(e~ 2)°

HCES

S

(2.69) se(E)= & x \/1 +

and this does not decrease to 0 as n — .
Note that variances of estimators include o2 in their equations. Estimated SEs replace the “population”

quantity o by a sample quantity &.

The 95% prediction interval for Y (z*) for a unit (not in sample) with value x*:

A

(2.44) Y (2*) % tn_o0075 X se(E), Y(z*)=po + frz* = iy (z¥),

where E = Y (z*) — Y (2*) = jy(z*) — Y (z*) = iy (z*) — Bo — frz* — e(z*) is the prediction error.



Predictions and prediction intervals

> pointé(xsfar, pbint_prédiétion,'tol="pink", pch=18, cex=3)
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Predictions and prediction intervals

> # 95% prediction interval:

> lowerPI <- point_prediction - qt(0.975,n-2) * s * sqgrt(1/n + 1 + ((xstar-xbar)A2)/((n-1)*sxA2))
> upperPI <- point_prediction + qgt(0.975,n-2) * s * sqrt(1/n + 1 + ((xstar-xbar)A2)/((n-1)*sxA2))
>

> c(lowerPI,upperPI)

[1] 5.61226 84.53007
>

> lines(x=c(xstar,xstar),y=c(lowerPI,upperPIl), col="darkviolet",lwd=15)
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Objective:

Design and
Methods:

Results:

Conclusions:

Small Print:

Sample statistics

Age vs. Money

b, = 17.7
The purpose of this observational study was to b, = 0.55
demonstrate if, and to what extent, age is s =155
associated with money. RZ = 0.49

We collected a random sample of individuals and for each For parameter B, :
determine(?l their age.(reco.rded in years) and.the amount 05% C.I. = [().()5, 1.()5]
of money (in dollars) in their accounts. Analysis of alue 0.036
the data was done using linear regression. P-value = U.x
We obtained a random sample of n = 9 subjects. There is a

statistically significant association between age and money (p-value =0.036).

For every additional year in age, an individual’s amount of money increases

on average by an estimated of $0.55 (95% C.l. = [S0.05, $1.05]).

We found that, as hypothesized, age is associated with money.
In our sample age accounted for about half of the variability
observed in money (R?=0.49). We predict that a 50 year old will
have $45.1 (95% P.l. = [$5.6, $84.5]), whereas a 40 year

old will have $39.6 (95% P.I. = [S0.8, $78.4]).

The analysis rests on the following assumptions:

the observations are independently and identically distributed.

the response variable, money, is normally distributed.
Homoscedasticity of residuals or equal variance.

the relationship between response and predictor variables is linear.




se(subpopulation mean) VS. se(prediction error)

Subpopulation mean:

1 (x—7)?
n (n—1)s2

Whereas,) the (estimated) SE of the prediction error s:

n (n—1)s2’

(2.69) & X \/1+1+ (z* — 7).

and this does not decrease to 0 as n — oo.



2.6 Explanation of Student t quantiles
in the interval estimates

2.6.1. History lesson about the t-test
2.6.2. Three important things to know about a normal random variable
2.6.3 Estimators as Random Variables (one more time!)

2.6.4 Explanation of Student t quantiles
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2.6.1. History lesson about the t-test

Student is the publication pseudonym for
William Gosset, who developed methods for
inference of means for small samples

while working at Guinness Brewery (lreland)

in early 1900s. I-ovely day fOI' d
GUINNESS

https://en.wikipedia.org/wiki/William_Sealy Gosset

William Sealy Gosset
(aka “Student”):

“Is this batch of beer
any different than the
standard?”

“Let’s have a taste test!
...t-test anyone?”
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2.6.2. Three important things to know
about a normal random variable

* Thing 1:
— Linear combinations of independent normal random

variables also have normal distributions! (see
Appendix B)



2.6.2. Three important things to know

about a normal random variable
* Thing 1:

— Linear combinations of independent normal random
variables also have normal distributions! (see Appendix B)

For example:
Let:
W, be a normal random variable
and W, be a normal random variable,
Then:
W, =aW,+ bW, isanormalr.v.
for any numbers a and b.



2.6.2. Three important things to know

about a normal random variable
* Thing 2:

— A normal random variable can be converted to a
standard normal random variable.

W ~ Normal(u,c?)

W—i . Normal(0,1)

o

Pr(—1.96 < *£ < 1.96) = 0.95

PT(—Zl_% < Wy < Zl—%) =1—-«

o



2.6.2. Three important things to know
about a normal random variable

* Thing 2:
— A normal random variable can be converted to a
standard normal random variable.

W ~ Normal(p,o?)
W—p

o)

Pr(—z_a < <z_o)=l-o

Pr(W —z_ao<p<W+z_20)=1-«

For example, with o« = 0.05:
Pr(W —1.960 < p < W +1.960) = 0.95



2.6.2. Three important things to know
about a normal random variable

* Thing 3:
— If the variance is unknown, we must use the t
distribution.

Pr(—tp_gi—2 < “5% <th_g1_2) =095

for example, Wlth n=29:
Pr(— 2.26 < X4 £ <2.26) =0.95



2.6.2. Three important things to know
about a normal random variable

* Thing 3:
— If the variance is unknown, we must use the t
distribution.

W—pu

o

~ tn—2

PT(W — tn_g,l_%a' < u< %4 —I—tn_g,l_%a’) =1—«

for example, with n = 9:
Pr(W —2.266 < u < W +2.266) = 0.95



2.6 Explanation of Student t quantiles
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2.6.1. History lesson about the t-test
2.6.2. Three important things to know about a normal random variable
2.6.3 Estimators as Random Variables (one more time!)

2.6.4 Explanation of Student t quantiles



Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 9, asa
random variable ©

Step 2:
Determine

E[ @] (to confirm it’s unbiased)

Var[©] (to calculate se)

Step 3:
Define
se(6 )=

estimate of \/ Var (©

Step 4:
Define
(1-0)% C.I. =

G:tcxse
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Bo b, B, E[B,] Var[B,] se(bg) C.I. for B,

B, b, B, E[B,] Var[B,] se(b,) C.I. for B,

02 52 S? E[S?] Var[S?] se(s?) C.l. for o2
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Recall:

Step O0:

estimator, 0

From 6, define

Step 1:

Consider the sample
statistic, 8, as a
random variable ©

N

Population Sample Estimator as
parameter statistic a Random

or “something (“estimator”) | Variable

we would like to

estimate”

Bo b, By

B, b, B, ——
02 52 S?

py () (y (2)) (Ay (2))

By =) _aY

, where: a; = (Ef:)a;)%
and: - R
E(Bi) = ) akE(Y)=) ai(Bo+hiz:)
=]
B,
2
. N o
and: Var (By) =
(n—1)sz

Since B, is a linear combination
of the Y.:s (Normal RVs), then (with Thing 1):

(n i721)82%)’

Bl ~ N (ﬁlaagl —

B, - B

9B

~ N(0,1).



Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 8, as a
random variable ©

N

Population Sample Estimator as
parameter statistic a Random

or “something (“estimator”) | Variable

we would like to

estimate”

o b o )
B b, B,

02 52 S?

py () (y (2)) (Ay (2))

Recall:

Also:

Var(By) = Var(3. , Yi/n) + X*Var(B)

E[Bo] = E[Y — B1 X]

= o(

1
n

= B[, Y] - B1X

= L5 1 (Bo+ BiXi) — B X

=B+ LY BXi—BX

= B 4‘51}1 Yy Xi— B X

=B+ X — f1 X

= Bo

+ X>

Z?:l (Xi—X)2

)

For the intercept, we can, again, make use
of the fact that B, is a linear combination
of normal random variables (Thing 1):

Bo ~ N[Bo,0* (% + g

£2

acq;—a_c)Q

)]



Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 8, as a
random variable ©

N

Population Sample Estimator as
parameter statistic a Random
or “something (“estimator”) | Variable

we would like to

estimate”

Bo b, By

B b, B,

02 52 S?

py ()




Step 1:

Step O: Consider the sample
From 6, define statistic, é, asa
estimator, 0 random variable ©

N

Population Sample Estimator as
parameter statistic a Random
or “something (“estimator”) | Variable

we would like to

estimate”

Bo b, By

B b, B,

02 52 S?

py () (y (2)) (fy (x))

We have that:

E iy (z)]= By + O12

(x —7)°
= 1y52])

Var [y (z)] = 02{77,—1 +

And again, a linear combination
of normal random variables is a normal
random variable (Thing 1):

r—x 2
~ NOTmal(60+61$70- ( + [(gn 1))32])>



Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 8, as a
random variable ©

N

Population Sample Estimator as
parameter statistic a Random
or “something (“estimator”) | Variable

we would like to

estimate”

Bo b, By

B b, B,

02 52 S?

py () (y (2)) (Ay (2))

By ~ N[50,02< Ty 1?;_:(;)2)]

(n i721)8?)

Bl ~ N (5170%1 —
2 2 2
S /U ~ Xn—2

py (z) ~ Normal (50 + 513@702(% T n=D)s27]

(z—2)*
n—1)s2]

)
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Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 8, as a
random variable ©

N

Population Sample Estimator as
parameter statistic a Random

or “something (“estimator”) | Variable

we would like to

estimate”

Po bo Bo ——>
B b, B,

02 52 S?

py () (y (2)) (Ay (2))

—2
Bo~ N8y, 0> (L + s )]
With Thing 2, we have:

Bo—Bo

2( 1 z2
\/" (”z::;lm—wﬂ)

But we do not know the variance. We only have
an estimate of the variance, so (with Thing 3):

~ N(0,1)

And therefore:

95% C.I. for By =

[ Y — le — 1n—2,0.975 - 8\/(% + 2?21()_()(22-—)2)2) ’

§—b1X +tn—20975 - 3\/(% + Zyzl(X)é—X)Q) ]



2.6.4 Explanation of Student t quantiles

Estimator as
a Random
Variable

By

B,

——>

SZ

PT(bl — tn—2,1—

With Thing 1, we have:

A o
BINN(BLO%IZ )7

(n—1)sz

With Thing 2, we have:
By — 1
91

But we do not know the variance,
so with Thing 3, we have:

~ N(0,1).

And therefore:

A

o
5 msx < ﬁl < bl T tn—2,1—§




2.6.4 Explanation of Student t quantiles

ST A With Thing 1, we have:
a Random R ) o2
Variable Bi~N o4 =
1 (Blv B1 (71-1)852,3) 9
B,
With Thing 2, we have:
B, B _
—— B1— B ~ N(0,1).
91
52
But we do not know the variance,
so with Thing 3, we have:
(Ay (z))
B1 —ﬁl ~ t
SE(B;) n—2
And therefore:
Pr(by —t,_oq_« g < <b t,_o1_«a G
(1 n—2,1 2\/@% 51 1+ 1, 2,1 2\/@8:):
with a=0.05:

A

Pr(bi — tn—20.975 \/m&fl)s < P <b1+tn-2,0975 \/(nafl)s )




Estimator as
a Random
Variable

By

Bl—

SZ

2.6.4 Explanation of Student t quantiles
With Thing 1, we have:

A 9 0'2
Bi~N —

With Thing 2, we have:

B — B
b,
But we do not know the variance,
so with Thing 3, we have:

~ N(0,1).

A



2.6.4 Explanation of Student t quantiles

Estimator as With Thing 1, we have:

a Random

Variabl 2 z?

Barla e By ~ N[ﬁo, o ( + ST 1(%_1,)2)]
0

With Thing 2, we have:

B, Po=Fo ~ N[0, 1]
2( 1 z2
d (n*xg;l(mi—f)?)

But we do not know the variance,
so with Thing 3, we have:

52

And therefore:

Pr(bo —tnzi-g - 5/(h + s frma) <fo <bo+tnzaog 5\/(i+ s i) ) = 1-0

with a=0.05:

Pr (bo — tpn—2,0.975 ° 8\/(% + 5w 5@2._@)2) < Po < b+ tr_2,0.0975 8\/( + s 1:('3; )2 )) = 0.95

=1 (‘,E'L



2.6.4 Explanation of Student t quantiles

Estimator as With Thing 1, we have:

a Random

Variable 2(1 z>

5 Bo ~ N[ﬁo’ g (E T Z?:jxi—fy)]
¢/

With Thing 2, we have:

51 Bo—Fo ~ N0, 1]

SZ
But we do not know the variance,

so with Thing 3, we have:

(A (z)) Bo— 80

And therefore: 95% C.I. for 50 —

52

g T blj _ tn—2,0.975 : S\/(% + Z:L 1(:13?:_:%)2) ,

Y — 01T +th—2,0.975 - 8\/(% T > i- 1?;—5)2) ]



Estimator as
a Random
Variable

By

B,

SZ

2.6.4 Explanation of Student t quantiles

With Thing 1, we have:

wy (z) ~ Normal ([30 + Bz, 0% (: + T

With Thing 2, we have...

But we do not know the variance,

so with Thing 3, we have...

And therefore:

The 95% confidence interval for subpopulation mean py (z) = 5y

ﬂ'Y (I) == tn 2.0.975 X SC(ﬁ}' (I))f

where:

)

fB'_I 1S



2.6.4 Explanation of Student t quantiles

For the null hypothesis Hy : 81 = 0. (2.76) implies that the null distribution of By /SE (Bl) is t,,_o. For
the data version, Bl / 36(31) is the standardized version of Bl; it is invariant to scale changes of the x and y
variables (because a scale change affect the SE in the same way as 51). |B1/se(51)| is the absolute t-ratio

statistic and large values indicate that the slope is significantly different from 0.



2.6.4 Explanation of Student t quantiles

For the null hypothesis Hy : f; = 0. (2.76) implies that the null distribution of B /SE (Bl) is t,,_o. For

the data version, Bl / 86(81) is the standardized version of Bl; it is invariant to scale changes of the x and y

variables (because a scale change affect the SE in the same way as (1). |B1/se(B1)| is the absolute t-ratio

statistic and large values indicate that the slope is significantly different from 0.

Hypothesis Test I “Null” hypothesis
Hy:B,=0
H :B,#0 \

“Alternative” hypothesis
We have:




2.6.4 Explanation of Student t quantiles

For the null hypothesis Hy : 8, = 0. (2.76) implies that the null distribution of By/SE(B;) is t,_s. For

the data version, 31 / se(BAl) is the standardized version of Bl; it is invariant to scale changes of the x and y

variables (because a scale change affect the SE in the same way as (1). |B1/se(B1)| is the absolute t-ratio

statistic and large values indicate that the slope is significantly different from 0.

Hypothesis Test I “Null” hypothesis
Hy:B,=0
H :B,#0 \

“Alternative” hypothesis
We have:




2.6.4 Explanation of Student t quantiles

For the null hypothesis Hy : 8, = 0. (2.76) implies that the null distribution of By/SE(B;) is t,_s. For

the data version, Bl / 86(81) is the standardized version of Bl; it is invariant to scale changes of the x and y

variables (because a scale change affect the SE in the same way as (1). |B1/se(B1)| is the absolute t-ratio

statistic and large values indicate that the slope is significantly different from 0.

Hypothesis Test I “Null” hypothesis
Hy:B,=0
H :B,#0 \

“Alternative” hypothesis
We have:




2.6.4 Explanation of Student t quantiles

For the null hypothesis Hy : 8, = 0. (2.76) implies that the null distribution of By/SE(B;) is tn_s. For

the data version, Bl / se(Bl) is the standardized version of Bl; it is invariant to scale changes of the x and y

variables (because a scale change affect the SE in the same way as (7). |B1/se(31)| is the absolute t-ratio

statistic and large values indicate that the slope is significantly different from 0.

Even if we decide to record “Age” (x) in months and “Money” (Y) in pennies,
“under the null”, we still have:




2.6.4 Explanation of Student t quantiles

For the null hypothesis Hy : f; = 0. (2.76) implies that the null distribution of By /SE (Bl) is t,,_o. For
the data version, Bl / se(Bl) is the standardized version of Bl; it is invariant to scale changes of the x and y

variables (because a scale change affect the SE in the same way as (1). |B1/se(B1)| is the absolute t-ratio

statistic and large values indicate that the slope is significantly different from 0.

x <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
y <- c¢(71, 54, 43, 45, 21, 11, 30, 45, 10)
n <-9

xbar <- (1/n)*sum(x)

sx <- sqrt( sum((x-xbar)A2)/(n-1) )

ybar <- (1/n)*sum(y)

Even if we decide to record “Age” (x)
in months and “Money” (Y) in pennies,
“under the null”, we still have:

Therefore...

If B, (the slope) was actually equal to O,

it would be very unlikely that the absolute
t-stat would be very large.

VVVVVVVVVVVYVYVYV

sy <- sqrt( sum((y-ybar)A2)/(n-1) )

sxy <- (1/(n-1))*sum((x-xbar)*(y-ybar))
rxy <- sxy/(sx*sy)
b@_hat<-ybar-bl_hat*xbar

bl_hat <- rxy*sy/sx

residuals <- y - b@_hat - bl_hat*x

s <- sqrt( (1/(n-2))*sum(residualsA2) )
S

[1] 15.5308

>
>

SE_bl <- s/(sqgrt(n-1)*sx)
SE_b1l

[1] 0.2108794

>
>

tstat_bl <- bl_hat/SE_bl
tstat_bl

[1] 2.599209



2.6.4 Explanation of Student t quantiles

For the null hypothesis Hy : 8, = 0. (2.76) implies that the null distribution of By/SE(B;) is t,_s. For

the data version, 31 / se(Bl) is the standardized version of Bl; it is invariant to scale changes of the x and y

variables (because a scale change affect the SE in the same way as (1). |B1/se(B1)| is the absolute t-ratio

statistic and large values indicate that the slope is significantly different from 0.

Even if we decide to record “Age” (x)
in months and “Money” (Y) in pennies,
“under the null”, we still have:

Bq N
SE(B1) tn—2
and:
t-statistic = B 1

SE(B1)

Therefore...

If B, (the slope) was actually equal to O,

it would be very unlikely that the absolute
t-stat would be very large.

> bl_hat <- rxy*sy/sx

> bl_hat

[1] 0.5481195

> residuals <- y - b@_hat - bl_hat*x
> s <- sgrt( (1/(n-2))*sum(residualsA2) )
> S

[1] 15.5308

> SE_bl <- s/(sqgrt(n-1)*sx)

> SE_b1l

[1] 0.2108794

> tstat_bl <- bl_hat/SE_bl

> tstat_bl

[1] 2.599209

# How unlikely would it be to obtain
# a value this large (or larger) if the
# null was true (i.e. beta_l = 0)?

VVVVY

> 2*pt(abs(tstat_bl), n-2, lower=FALSE)
[1] 0.03546599



2.6.4 Explanation of Student t quantiles

> bl_hat <- rxy*sy/sx

> bl_hat

[1] 0.5481195

> residuals <- y - b@_hat - bl_hat*x
> s <- sgrt( (1/(n-2))*sum(residualsA2) )
> S

[1] 15.5308

> SE_b1l <- s/(sgrt(n-1)*sx)

> SE_bl

[1] 0.2108794

> tstat_bl <- bl_hat/SE_bl

> tstat_bl

[1] 2.599209
> summary(1lmCy~x))

>
Call: > # How unlikely would it be to obtain
Im(formula = y ~ x) > # a value this large (or larger) if the
> # null was true (i.e. beta_l = 0)?
Residyals: . >
20,826 —12.5%% Mgd;gg 11.628 17,405 > 2*pt(abs(tstat_bl), n-2, lower=FALSE)
[1] 0.03546599
Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 17.6652 8.9579 1.972 0.0892 .
X 0.5481 0.2109 2.599 0.0355 *

Signif. codes: @ ‘***’ @ .001 ‘**’ 0.01 ‘*’ .05 ‘.’ 0.1 ¢’ 1

Residual standard error: 15.53 on 7 degrees of freedom
Multiple R-squared: 0.4911, Adjusted R-squared: 0.4184
F-statistic: 6.756 on 1 and 7 DF, p-value: 0.03547



2.6.4 Explanation of Student t quantiles

> b@_hat<-ybar-bl_hat*xbar

> b@_hat

[1] 17.66519

> residuals <- y - b@_hat - bl_hat*x

> s <- sqrt( (1/(n-2))*sum(residualsA2) )
> S

[1] 15.5308

> SE_b@ <- s*sqgrt( 1/n + ( (xbarA2)/( sum((x-xbar)A2)) ) )
> SE_bO

[1] 8.957892

> tstat_b@ <- b@_hat/SE_b0O

> tstat_b0

[1] 1.972026

> summary(1lmCy~x)) >
> # How unlikely would it be to obtain
Call: > # a value this large (or larger) if the
Im(formula = y ~ x) > # null was true (i.e. beta_@ = 0)?
Residuals: >
Min 1Q Median 3Q Max > 2*pt(abs(tstat_b@), n-2, lower=FALSE)

-20.820 -12.561 5.757 11.669 17.469 [1] 0.08922444

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 17.6652 8.9579 1.972 0.0892 .
X 0.5481 0.2109 2.599 0.0355 *

Signif. codes: @ ‘***’ @ .001 ‘**’ 0.01 ‘*’ .05 ‘.’ 0.1 ¢’ 1

Residual standard error: 15.53 on 7 degrees of freedom
Multiple R-squared: 0.4911, Adjusted R-squared: 0.4184
F-statistic: 6.756 on 1 and 7 DF, p-value: 0.03547



2.6.4 Explanation of Student t quantiles

Interpretation for a confidence interval: be careful in what is correct and incorrect usage.
A confidence interval consists of an interval estimate of a population parameter (Greek letter). So we

can say 95% confidence interval for 5; but not 95% confidence interval for 3.




2.6.4 Explanation of Student t quantiles

Interpretation for a confidence interval: be careful in what is correct and incorrect usage.

A confidence interval consists of an interval estimate of a population parameter (Greek letter). So we
can say 95% confidence interval for 8; but not 95% confidence interval for 3.

The interval (2.79) has 95% probability content if B; and S = ¢ are considered as random variables.
When Bl and ¢ are computed from data values, the interval (2.79) is called a 95% confidence interval.




2.6.4 Explanation of Student t quantiles

Interpretation for a confidence interval: be careful in what is correct and incorrect usage.

A confidence interval consists of an interval estimate of a population parameter (Greek letter). So we
can say 95% confidence interval for 8; but not 95% confidence interval for 3.

The interval (2.79) has 95% probability content if B; and S = 6 are considered as random variables.
When Bl and ¢ are computed from data values, the interval (2.79) is called a 95% confidence interval.
For example, the 95% confidence interval for the Merck beta is 0.871 £ 0.497 = (0.374,1.368).

With numbers (not random variables) in the interval, the interval either contains the true (; or it
doesn’t (and probability is 1 or 0). This is the reason why a numerical interval of most plausible values
for a population parameter is called a confidence interval. Probability content of an interval containing
a quantity can only be considered if the endpoints of the interval are considered as random variables
and not a specific numbers computed from data.




2.6.4 Explanation of Student t quantiles
Explanation of Thing 3:

Definition of a t, random variable.

Let Z ~ N(0,1) and let W ~ x2 (chi-square distribution with v degrees of freedom, this has a right-
skewed density on the positive real line). The random variables Z and W are mutually independent.
Then the definition of a t, random variables from a standard normal random variable and a chi-square
random variable is as follows: 7

VW/v -

or 1" has a Student t, distribution. For this to apply above to Bi—f i (2.76), write

T =

ty

B - B _ (Bl _61)/031
SE(B) \/SE2(1§1) Jo% '

Since Z = (By — B1)/os, ~ N(0,1), to get a t,_o distribution, it is necessary to show that SE?(B,)
(as a random variable) is independent of By, and that W = (n — 2)SE2%(B,)/ 0%1 ~x2_,.




linear Age vs. Money

regression \

PREDICTOR variable RESPONSE variable
i dollars (S)
Age in 5
X — Ygars Y In bank account
Pobulat Sample, n=9
opuiation : .
P Population Sample statistics . Xy
parameters , b, = 17.7 al\ o
Bo; Bll o b, = 0.55 - 45 54
s =155 w ° 43
. R2 = 0.49 T 7
Hypothesis Test ; 2 as
: — . 29 21
Ho: Bl 0 For parameter B, : :: 9 11
H,:B,#0 95% C.I. = [0.05, 1.05] ; 2 3
p-value = 0.036 # 18 45
i. 24 10




