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Finding	Rela1onships	in	Data.	
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Sec1on	2.6		

	



Recap	from	last	lecture	
2.5	(con1nued)	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

β0	 b0	 B0	 E[B0]	 Var[B0]	
	

se(b0)	 C.I.	for	β0	

β1	 b1	 B1	 E[B1]	 Var[B1]	 se(b1)	 C.I.	for	β1	

σ2				
	

s2	 S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	

E	 Var	 C.I.	for	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	

0 20 40 60 80 100

0
20

40
60

80
10
0

x

y

σ2	is	the	variance	of	Y;	constant	
regardless	of	the	value	of	x.	

The	blue	dashed	line	is	the	confidence	
	interval	for	the	subpopula1on	mean.	
In	other	words,	it	represents	the	variability	
in	our	es1mate	of	the	mean	of	Y	as	x	changes.	



Suppose	we	now	want	to	make	a	predic'on	for	a	new	value	of	x.	
	
Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	

	 		someone	aged	50	years	old	(X=50)	will	have.	
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Predic'ons	and	predic'on	intervals	
	
	
	



Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	
	 		someone	aged	X=50	years	old	will	have.	

	
this	hypothe1cal	new	person	aged	50	is	some1mes	called	“an	out-of-sample	unit	with	value	x*”,	
Where	x*=50.	
	
Our	best	es1mate,	also	known	as	the	“point	predic1on”,	would	be	equal	to	b0	+b1(50)	=	45.1	
	
	

	 		

Predic'ons	and	predic'on	intervals	
	
	
	



Predic'ons	and	predic'on	intervals	
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Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	
	 		someone	aged	X=50	years	old	will	have.	
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Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	
	 		someone	aged	X=60	years	old	will	have.	

Our	predic1on	
The	truth	

The	difference	between	our	predic1on	and	the	truth	is	the	error	
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Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	
	 		someone	aged	X=60	years	old	will	have.	

Our	predic1on	
The	truth	

The	difference	between	our	predic1on	and	the	truth	is	the	error	

Cov()	is	equal	to	0,	since	the	two	
terms	are	independent.	
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Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	
	 		someone	aged	X=60	years	old	will	have.	
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se(E)	=		

Predic'ons	and	predic'on	intervals	
	
	
	



se(E)	=		
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Age	vs.	Money	
Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	money.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	money	(in	dollars)	in	their	accounts.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	money.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		



se(subpopula'on	mean)	VS.	se(predic'on	error)	

Subpopula1on	mean:	

Whereas	 is:	
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2.6.1.	History	lesson	about	the	t-test	
	
	Student	is	the	publica1on	pseudonym	for		

William	Gosset,	who	developed	methods	for	
inference	of	means	for	small	samples		
while	working	at	Guinness	Brewery	(Ireland)	
in	early	1900s.		
	
htps://en.wikipedia.org/wiki/William_Sealy_Gosset	
	

	William	Sealy	Gosset		
(aka	“Student”):	
	
“Is	this	batch	of	beer		
any	different	than	the		
standard?”	
	
“Let’s	have	a	taste	test!	
…t-test	anyone?”	
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•  Thing	1:	
–  Linear	combina1ons	of	independent	normal	random	
variables	also	have	normal	distribu1ons!	(see	
Appendix	B)	

	

	
2.6.2.	Three	important	things	to	know	

about	a	normal	random	variable	
	
		



•  Thing	1:	
–  Linear	combina1ons	of	independent	normal	random	
variables	also	have	normal	distribu1ons!	(see	Appendix	B)	

For	example:			
	 	 	Let:	
	 	 	 	W1	be	a	normal	random	variable	
	 	 	 	and	W2		be	a	normal	random	variable,	
	 	 	Then: 		
	 	 	 	 	W3	=	aW1	+	bW2		is	a	normal	r.v.	
	 	 	 	 	for	any	numbers	a	and	b.	

	
	
	

	
2.6.2.	Three	important	things	to	know	

about	a	normal	random	variable	
	
	



•  Thing	2:	
–  A	normal	random	variable	can	be	converted	to	a	
standard	normal	random	variable.	
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•  Thing	2:	
–  A	normal	random	variable	can	be	converted	to	a	
standard	normal	random	variable.	
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about	a	normal	random	variable	
	
	



•  Thing	3:	
–  If	the	variance	is	unknown,	we	must	use	the	t	
distribu1on.	
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Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

β0	 b0	 B0	 E[B0]	 Var[B0]	
	

se(b0)	 C.I.	for	β0	

β1	 b1	 B1	 E[B1]	 Var[B1]	 se(b1)	 C.I.	for	β1	

σ2				
	

s2	 S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	

E	 Var	 C.I.	for	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

β0	 b0	 B0	

β1	 b1	 B1	

σ2				
	

s2	 S2	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

		
Since	B1	is	a	linear	combina1on		
of	the	Yis	(Normal	RVs),	then	(with	Thing	1):	

Recall:	

and:	

and:	

,	where:	
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parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

β0	 b0	 B0	

β1	 b1	 B1	

σ2				
	

s2	 S2	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

		

Recall:	

Also:	

For	the	intercept,	we	can,	again,	make	use		
of	the	fact	that	B0	is	a	linear	combina1on		
of	normal	random	variables	(Thing	1):	
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(“es'mator”)	
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a	Random	
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β0	 b0	 B0	

β1	 b1	 B1	

σ2				
	

s2	 S2	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		
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a	Random	
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β0	 b0	 B0	

β1	 b1	 B1	

σ2				
	

s2	 S2	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

		

We	have	that:	

And	again,	a	linear	combina1on		
	of	normal	random	variables	is	a	normal	
	random	variable	(Thing	1):	
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Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		
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we	would	like	to	
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Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
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β0	 b0	 B0	
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σ2				
	

s2	 S2	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

		

With	Thing	2,	we	have:	

But	we	do	not	know	the	variance.	We	only	have		
an	es1mate	of	the	variance,	so	(with	Thing	3):	

And	therefore:	



But	we	do	not	know	the	variance,		
so	with	Thing	3,	we	have:	

With	Thing	2,	we	have:	

And	therefore:	

With	Thing	1,	we	have:	

2.6.4	Explana'on	of	Student	t	quan'les	
Es'mator	as	
a	Random	
Variable	

B0	

B1	

S2	



But	we	do	not	know	the	variance,		
so	with	Thing	3,	we	have:	

With	Thing	2,	we	have:	

With	Thing	1,	we	have:	

2.6.4	Explana'on	of	Student	t	quan'les	

And	therefore:	

with	α=0.05:	

Es'mator	as	
a	Random	
Variable	

B0	

B1	

S2	



But	we	do	not	know	the	variance,		
so	with	Thing	3,	we	have:	

With	Thing	2,	we	have:	

And	therefore:	

With	Thing	1,	we	have:	

95%	C.I.		for	β1	=	

where:	 ,	
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But	we	do	not	know	the	variance,		
so	with	Thing	3,	we	have:	

With	Thing	2,	we	have:	

With	Thing	1,	we	have:	
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And	therefore:	

with	α=0.05:	

Es'mator	as	
a	Random	
Variable	

B0	

B1	

S2	



But	we	do	not	know	the	variance,		
so	with	Thing	3,	we	have:	

With	Thing	2,	we	have:	

With	Thing	1,	we	have:	
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And	therefore:	

Es'mator	as	
a	Random	
Variable	

B0	

B1	

S2	



But	we	do	not	know	the	variance,		
so	with	Thing	3,	we	have…	

With	Thing	2,	we	have…	

With	Thing	1,	we	have:	

2.6.4	Explana'on	of	Student	t	quan'les	

And	therefore:	

where:	

Es'mator	as	
a	Random	
Variable	

B0	

B1	

S2	
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Hypothesis	Test	
H0	:	β1	=	0	
H1	:	β1	≠	0	

We	have:	

“Null” hy)othesis 

“Alter1ative” hy)othesis 
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Hypothesis	Test	
H0	:	β1	=	0	
H1	:	β1	≠	0	

We	have:	

“Null” hy)othesis 

“Alter1ative” hy)othesis 

=	0	
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Hypothesis	Test	
H0	:	β1	=	0	
H1	:	β1	≠	0	

We	have:	

“Null” hy)othesis 

“Alter1ative” hy)othesis 

=	0	

Therefore,	“under	the	null”,	we	have:	

2.6.4	Explana'on	of	Student	t	quan'les	



Even	if	we	decide	to	record	“Age”	(x)	in	months	and	“Money”	(Y)	in	pennies,		
“under	the	null”,	we	s1ll	have:	
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Even	if	we	decide	to	record	“Age”	(x)		
in	months	and	“Money”	(Y)	in	pennies,		
“under	the	null”,	we	s1ll	have:	

Therefore…	
If	β1	(the	slope)	was	actually	equal	to	0,	
it	would	be	very	unlikely	that	the	absolute	
t-stat	would	be	very	large.	

and:	
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Explana1on	of	Thing	3:	

2.6.4	Explana'on	of	Student	t	quan'les	



Age	vs.	Money	

Popula'on	

dollars	($)	
In	bank	account	

Popula1on	
parameters	

Hypothesis	Test	

Sample,	n=9	
Sample	sta1s1cs	

β0	,	 σ2				β1	,	
	

H0	:	β1	=	0	
H1	:	β1	≠	0	
	

82	

22	

45	
71	

29	

12	
9	

18	
24	

x       y 

71	
	

54	
	

43	
	
45	
21	
11	
	
30	
45	
10	
	

Age	in	
Years		

PREDICTOR variable 

 x 

RESPONSE variable 

       Y 

b0			=		17.7	
b1			=		0.55	
s					=		15.5	
R2				=		0.49	
	

For	parameter	β1	:		

linear	
regression	


