
Stat	306:		
Finding	Rela1onships	in	Data.	

Lecture	5	
Sec1on	2.5	(con1nued)	

	



Age	vs.	Money	

Popula'on	

dollars	($)	
In	bank	account	

Popula1on	
parameters	

Hypothesis	Test	

Sample,	n=9	
Sample	sta1s1cs	

β0	,	 σ2				β1	,	
	

H0	:	β1	=	0	
H1	:	β1	≠	0	
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Age	in	
Years		

PREDICTOR variable 

 X 

RESPONSE variable 

       Y 

b0			=		17.7	
b1			=		0.55	
s					=		15.5	
R2				=		0.49	
	

For	parameter	β1	:		

linear	
regression	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

β0	 b0	 B0	 E[B0]	 Var[B0]	
	

se(b0)	 C.I.	for	β0	

β1	 b1	 B1	 E[B1]	 Var[B1]	 se(b1)	 C.I.	for	β1	

σ2				
	

s2	 S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	

E	 Var	 C.I.	for	

		



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

β0	 b0	 B0	 E[B0]	 Var[B0]	
	

se(b0)	 C.I.	for	β0	

β1	 b1	 B1	 E[B1]	 Var[B1]	 se(b1)	 C.I.	for	β1	

σ2				
	

s2	 S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	
	

E	 Var	 C.I.	for	
	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

β0	

β1	

σ2				
	

		

The	simple	linear	regression	model:	

Therefore:		

subpopula1on	mean:	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

β0	 b0	

β1	 b1	

σ2				
	

s2	

Step	0:	
From	θ,	define	
es1mator,		

		
,	where:	

=		b0	+	b1x	 ,		where:			



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

β0	 b0	 B0	

β1	 b1	 B1	

σ2				
	

s2	 S2	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

		
,	where:	

,		where:			



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

β0	 b0	 B0	

β1	 b1	 B1	

σ2				
	

s2	 S2	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

		

Preview	from	sec1on	2.6…	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

β0	 b0	 B0	 E[B0]	

β1	 b1	 B1	 E[B1]	

σ2				
	

s2	 S2	 E[S2]	

E	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Therefore	b0	is	“unbiased”.	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

β0	 b0	 B0	 E[B0]	
unbiased	

β1	 b1	 B1	 E[B1]	

σ2				
	

s2	 S2	 E[S2]	

E	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Therefore	b1	is	“unbiased”.	

,	where:	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

β0	 b0	 B0	 E[B0]	

β1	 b1	 B1	 E[B1]	
unbiased	

σ2				
	

s2	 S2	 E[S2]	

E	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Therefore	s2	is	“unbiased”.	
credit:	hips://web.njit.edu/~wguo/Math644_2012/Math644_Chapter%201_part2.pdf	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

β0	 b0	 B0	 E[B0]	
unbiased	

β1	 b1	 B1	 E[B1]	
unbiased	

σ2				
	

s2	 S2	 E[S2]	
unbiased	

E	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Therefore	the	subpopula1on	mean”	is	“unbiased”.	

,		where:			



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

β0	 b0	 B0	 E[B0]	
unbiased	

Var[B0]	
	

β1	 b1	 B1	 E[B1]	
unbiased	

Var[B1]	

σ2				
	

s2	 S2	 E[S2]	
unbiased	

Var[S2]	

E	
unbiased	

Var	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

β0	 b0	 E[B0]	
unbiased	

Var[B0]	
	

β1	 b1	 E[B1]	
unbiased	

Var[B1]	

σ2				
	

s2	 E[S2]	
unbiased	

Var[S2]	

E	
unbiased	

Var	

Step	0:	
From	θ,	define	
es1mator,		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

β0	 b0	 E[B0]	
unbiased	

Var[B0]	
	

β1	 b1	 E[B1]	
unbiased	

Var[B1]	

σ2				
	

s2	 E[S2]	
unbiased	

Var[S2]	

E	
unbiased	

Var	

Step	0:	
From	θ,	define	
es1mator,		

		

,	where:	

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

β0	 b0	 E[B0]	
unbiased	

Var[B0]	
	

β1	 b1	 E[B1]	
unbiased	

Var[B1]	

σ2				
	

s2	 E[S2]	
unbiased	

Var[S2]	

E	
unbiased	

Var	

Step	0:	
From	θ,	define	
es1mator,		

		
We	will	skip	this….	

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

β0	 b0	 E[B0]	
unbiased	

Var[B0]	
	

β1	 b1	 E[B1]	
unbiased	

Var[B1]	

σ2				
	

s2	 E[S2]	
unbiased	

Var[S2]	

E	
unbiased	

Var	

Step	0:	
From	θ,	define	
es1mator,		

		

,		where:			

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	



Variance		
of	the	
es'mator	
	
	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

Var[B0]	
	

se(b0)	 C.I.	for	β0	

Var[B1]	 se(b1)	 C.I.	for	β1	

Var[S2]	 se(s2)	 C.I.	for	σ2	

Var	 C.I.	for	
	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



Variance		
of	the	
es'mator	
	
	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

Var[B0]	
	

se(b0)	 C.I.	for	β0	

Var[B1]	 se(b1)	 C.I.	for	β1	

Var[S2]	 se(s2)	 C.I.	for	σ2	

Var	 C.I.	for	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

where:	



Variance		
of	the	
es'mator	
	
	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

Var[B0]	
	

se(b0)	 C.I.	for	β0	

Var[B1]	 se(b1)	 C.I.	for	β1	

Var[S2]	 se(s2)	 C.I.	for	σ2	

Var	 C.I.	for	

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

We	will	skip	this….	



Variance		
of	the	
es'mator	
	
	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

Var[B0]	
	

se(b0)	 C.I.	for	β0	

Var[B1]	 se(b1)	 C.I.	for	β1	

Var[S2]	 se(s2)	 C.I.	for	σ2	

Var	 C.I.	for	

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

where:	



Standard	
Error	of	
es'mator	
	
	

Confidence	
Interval	

se(b0)	 C.I.	for	β0	

se(b1)	 C.I.	for	β1	

se(s2)	 C.I.	for	σ2	

C.I.	for	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



Standard	
Error	of	
es'mator	
	
	

Confidence	
Interval	

se(b0)	 C.I.	for	β0	

se(b1)	 C.I.	for	β1	

se(s2)	 C.I.	for	σ2	

C.I.	for	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

Then	we	have	:		
	

	95%	C.I.		For	β1	=	

where:	



Standard	
Error	of	
es'mator	
	
	

Confidence	
Interval	

se(b0)	 C.I.	for	β0	

se(b1)	 C.I.	for	β1	

se(s2)	 C.I.	for	σ2	

C.I.	for	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

We	will	skip	this….	



Standard	
Error	of	
es'mator	
	
	

Confidence	
Interval	

se(b0)	 C.I.	for	β0	

se(b1)	 C.I.	for	β1	

se(s2)	 C.I.	for	σ2	

C.I.	for	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

where:	

and:	

and:	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

β0	 b0	 B0	 E[B0]	 Var[B0]	
	

se(b0)	 C.I.	for	β0	

β1	 b1	 B1	 E[B1]	 Var[B1]	 se(b1)	 C.I.	for	β1	

σ2				
	

s2	 S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	

E	 Var	 C.I.	for	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



•  Ques1ons?	



•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	



•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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We	have	ploied	the	“observed	data”	(i.e.	one	realiza1on	of	the	random	vector	Y):	



•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	



•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	



•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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Suppose	we	now	want	to	make	a	predic'on	for	a	new	value	of	x.	
	
Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	

	 		someone	aged	50	years	old	(X=50)	will	have.	
	 		

•  Predic1ons	and	predic1on	intervals---	
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Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	
	 		someone	aged	X=50	years	old	will	have.	

	
this	hypothe1cal	new	person	aged	50	is	some1mes	called	“an	out-of-sample	unit	with	value	x*”,	
Where	x*=50.	
	
Our	best	es1mate,	also	known	as	the	“point	predic1on”,	would	be	equal	to	b0	+b1(50)	=	45.1	
	
	

	 		

•  Predic1ons	and	predic1on	intervals---	



•  Predic1ons	and	predic1on	intervals---	
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•  Predic1ons	and	predic1on	intervals---	
Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	

	 		someone	aged	X=60	years	old	will	have.	



•  Predic1ons	and	predic1on	intervals---	
Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	

	 		someone	aged	X=60	years	old	will	have.	

Our	predic1on	
The	truth	

The	difference	between	our	predic1on	and	the	truth	is	the	error	



•  Predic1ons	and	predic1on	intervals---	
Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	

	 		someone	aged	X=60	years	old	will	have.	

Our	predic1on	
The	truth	

The	difference	between	our	predic1on	and	the	truth	is	the	error	



•  Predic1ons	and	predic1on	intervals---	
Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	

	 		someone	aged	X=60	years	old	will	have.	

Our	predic1on	
The	truth	

The	difference	between	our	predic1on	and	the	truth	is	the	error	

Cov()	is	equal	to	0,	since	the	two	
terms	are	independent.	



•  Predic1ons	and	predic1on	intervals---	
Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	

	 		someone	aged	X=60	years	old	will	have.	

Our	predic1on	
The	truth	

is	

Note	



•  Predic1ons	and	predic1on	intervals---	
Example:		Suppose	we	would	like	to	predict	how	much	money	(Y),	

	 		someone	aged	X=60	years	old	will	have.	

Our	predic1on	
The	truth	

is	

Note	



•  Predic1ons	and	predic1on	intervals---	



•  Predic1ons	and	predic1on	intervals---	

se(E)	=		



•  Predic1ons	and	predic1on	intervals---	

se(E)	=		



•  Predic1ons	and	predic1on	intervals---	
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•  Predic1ons	and	predic1on	intervals---	
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Age	vs.	Money	
Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	money.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	money	(in	dollars)	in	their	accounts.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	money.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		



Age	vs.	Money	
Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	money.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	money	(in	dollars)	in	their	accounts.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	money.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		



Age	vs.	Money	
Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	money.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	money	(in	dollars)	in	their	accounts.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	money.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		



Age	vs.	Money	
Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	money.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	money	(in	dollars)	in	their	accounts.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	money.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		



Age	vs.	Money	
Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	money.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	money	(in	dollars)	in	their	accounts.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	money.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		



•  Ques1ons?	


