Stat 306:

Finding Relationships in Data.

Lecture 5
Section 2.5 (continued)
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Population Sample Estimator as | Expected Variance Standard Confidence

parameter statistic a Random Value of the | of the Error of Interval
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Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 9, asa
random variable ©

Step 2:
Determine

E[ @] (to confirm it’s unbiased)

Var[©] (to calculate se)

Step 3:
Define
se(6 )=

estimate of \/ Var (©

Step 4:
Define
(1-0)% C.I. =

G:tcxse
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parameter statistic a Random Value of the | of the Error of Interval

or “something (“estimator”) | Variable estimator estimator estimator

we would like to
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Bo b, B, E[B,] Var[B,] se(bg) C.I. for B,
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Population
parameter

or “something
we would like to
estimate”

Bo

B

The simple linear regression model:
Yi=Po+bizite, i1=1,...,n
where the ¢;’s are independent normal random variables with mean 0 and variance o
Therefore:
Y; ~ N(Bo + Bizi, 0°)
subpopulation mean:

BY|X = z] = bo + b1z
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Step O0:

estimator, 0

From 6, define

'

Population Sample
parameter statistic

or “something (“estimator”)
we would like to

estimate”

Bo by

B, b,

02 52

Uy (:13) fiy (z)

bozy—blw

. Sy _ n r;—I
bl — Twyg = Zizl a;Y; ,where: a; = (51—1)3)3;
2
g2 — 2 i1 &
n—2
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fiy(z) = by+bx =D ¢y , where:

(z —T)(z; — T)
(n —1)s3

ci=n"l+a(z—7)=n""+



Step 1:

Step O: Consider the sample
From 6, define statistic, 8, as a
estimator, 6 random variable ©

N

Population Sample Estimator as
parameter statistic a Random
or “something (“estimator”) | Variable

we would like to

estimate”

Bo b, By
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Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 8, as a
random variable ©

N
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Population Sample Estimator as
parameter statistic a Random
or “something (“estimator”) | Variable

we would like to

estimate”
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Preview from section 2.6...
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Step 1:

Step O:

estimator, 6

From 6, define

Consider the sample
statistic, #, as a
random variable ©

Step 2:

Determine

E[ é] (to confirm it’s unbiased)
Var[©] (to calculate se)

N NN

—

Population Sample Estimator as | Expected
parameter statistic a Random Value of the
or “something (“estimator”) | Variable estimator
we would like to

estimate”

Bo b, By E[B,]

B b, B, E[B,]
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= o+ L X, BiXi— /X
= o+ By 2icy Xi — 1 X
= fo+ b1 X — X

= Bo

Therefore b, is “unbiased”.



Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 8, as a
random variable ©

Step 2:

Determine

E[ é] (to confirm it’s unbiased)
Var[©] (to calculate se)

N NN

Population Sample Estimator as | Expected

parameter statistic a Random Value of the

or “something (“estimator”) | Variable estimator

we would like to

estimate”

Bo b, By E[B,]
unbiased

B b, B, E[B,]

02 52 S? E[S?]

uy(z) | Gv(@) | (ay(z) | Elr(@)

B4

(2.56)
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Zﬂ:l aiYi , Where:

n n

E(B) = aE (Y;) =) _ai(Bo + Biz:)

i=1 i=1
n n
= 502% + b1 Zaﬂi
1=1 =1
- (z; — T)x;
044 -
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B,

Therefore b, is “unbiased”.



Step O0:

estimator, 0

From 6, define

Step 1:

Consider the sample
statistic, 8, as a
random variable ©

Step 2:

Determine

E[ é] (to confirm it’s unbiased)
Var[©] (to calculate se)

N NN

Population Sample Estimator as | Expected
parameter statistic a Random Value of the
or “something (“estimator”) | Variable estimator
we would like to
estimate”
Bo b, By E[B,]
B b, B, E[B,]
unbiased
02 52 S? E[S?] |
uy(z) | Gv(@) | (ay(z) | Elr(@)

credit: https://web.njit.edu/~wguo/Math644_2012/Math644_Chapter%201_part2.pdf
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Step 1:

Step O0:

estimator, 6

From 6, define

Consider the sample
statistic, 8, as a
random variable ©

Step 2:

Determine

E[ (':)] (to confirm it’s unbiased)
Var[©] (to calculate se)
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parameter | statistic a Random Value of the 6= nl 4 (z —7)(z; — T)
or “something | (“estimator”) | Variable estimator (n—1)s3
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estimate” . n n
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2.62 _ .
0’ s S? E[S?] (262) o Bo + 51T + Bi(z — T) Z aiT;
unbiased =1
= Bo+ BT + Bi(z — 7)
py () (y (z)) (fy (x)) E(fy(x))
m— = [o + 012

Therefore the subpopulation mean” is “unbiased”.



Step 1:

Step O:

estimator, 6

From 6, define

Consider the sample
statistic, #, as a
random variable ©

Step 2:

Determine

E[ é] (to confirm it’s unbiased)
Var[©] (to calculate se)
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Step 2:
Step 0: De'Eermine
From 6, define E[O] (to confirm it's unbiased)
estimator, 0 Var[©] (to calculate se)
Population Sample Expected Variance
parameter statistic Value of the | of the
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we would like to
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Step O:
From 6, define
estimator, 6

Step 2:

Determine

E[ (':)] (to confirm it’s unbiased)
Var[©] (to calculate se)
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Step O0:

estimator, 0

From 6, define

'

Step 2:
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E[ é] (to confirm it’s unbiased)
Var[©] (to calculate se)
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We will skip this....



Step O0:

estimator, 0

From 6, define

'
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Var[©] (to calculate se)
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Var(By)

= se(bp)

2/1 X2
d (ﬁ T ?_1(X7;—X')2)
1 X2
8\/(6 + ?:1(Xi_X)2)

Step 3: Step 4:

Define Define

se(é )= (1-0)% C.I. =

estimate of 1/ Var (©) 0+ c x se(é)
Variance Standard Confidence
of the Error of Interval
estimator estimator
Var[B,] se(bg) C.I. for B,
Var[B,] se(b,) C.I. for B,
Var[S?] se(s?) C.l. for 62
Var (,&Y(g;)) se(,&y(x)) C.l. for

py ()
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of the Error of Interval
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—> We will skip this....

Step 3: Step 4:

Define Define

se(é )= (1-0)% C.I. =

estimate of 1/ Var (©) é + ¢ X se(é)
Variance Standard Confidence
of the Error of Interval
estimator estimator
Var[B,] se(b,) C.I. for B,
Var[B,] se(b,) C.I. for B,
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Step 3: Step 4:

Define Define

se(é )= (1-0)% C.I. =

estimate of 1/ Var (©) 0+ c x se(é)
Variance Standard Confidence
of the Error of Interval
estimator estimator
Var[B,] se(b,) C.I. for B,
Var[B,] se(b,) C.I. for B,
Var[S?] se(s?) C.l. for 62
Var (ﬂY(CU)) se(fiy (x)) C.l. for

M Y (x)




A confidence interval for a parameter # commonly has the form

0 + c x se(),

Step 4:
Define
(1-0)% C.I. =

0 + ¢ x se(f)
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e ——

95% C.1. for By =

[ J—b1X —tn_200975 - 8\/(% + Z?zl(XXi—XP) )
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Error of Interval
estimator
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Step 4:
Define
(1-0)% C.I. =

Then we have :

0 + ¢ x se(f)

"
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We will skip this....

Step 4:
Define
(1-0)% C.I. =

0 + ¢ x se(f)

"

e ——

Standard Confidence
Error of Interval
estimator
se(bg) C.I. for B,
se(b,) C.I. for B,
se(s?) C.l. for o2
Se(,&y(x)) C.l. for

py ()




Step 4:

Define

(1-0)% C.I. =

0 + ¢ x se(f)
Standard Confidence
Error of Interval
estimator

The 95% confidence interval for subpopulation mean uy (z) = 8y + Siz is

se(bg) C.I. for B,

fiy(z) £t, 20075 X se(fty(x)),

where: (2.43) se(bl) C.I. for Bl
1 _ 72
seiv(z)) = & \/ D o) |Clfore?
and:
. - - ~ C.l. for
fiy(z) = By + Sz #ge(w(w)) py ()
and S e



Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 9, asa
random variable ©

Step 2:
Determine

E[ @] (to confirm it’s unbiased)

Var[©] (to calculate se)

Step 3:
Define
se(6 )=

estimate of \/ Var (©

Step 4:
Define
(1-0)% C.I. =

G:tcxse
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Population Sample Estimator as | Expected Variance Standard Confidence

parameter statistic a Random Value of the | of the Error of Interval

or “something (“estimator”) | Variable estimator estimator estimator

we would like to

estimate”

Bo b, B, E[B,] Var[B,] se(bg) C.I. for B,
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e Questions?



* Confused about homogeneity vs. non-consistent

width of confidence intervals?

/'f\‘
= o
7]
-
@
o
>
- 5
0
g J E[Y] = Bo + le
o .
a < / '
< [ N
~ ~.
N NG / S
~ B T \\\
'\\_\ \" - "
™~ S 80
Y ~ S 60
Response varnable Bo T el ;
~~._.— 20 Explanatory variable
0 X _-
o -7
=] ,/’
i (]
’/
o _| ///
> ”"/
o ",—',"_——_—’
S - e
//
o ’/ [ )




"VVVVVVVVVVVVYVVVYVY

* Confused about homogeneity vs. non-consistent
width of confidence intervals?

HH R
# Linear regression example

HHHHH BRI
# x and n are fixed values

x <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)

n <-9

# y 1s a realization of the random variable "Y", i.e. "observed data":
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10)

plot(y~x, xlim=c(0,100), ylim=c(0,100), pch=20, cex=3)

# beta@d, betal, and sigma2 are population parameters

# let's pretend that we know the values of these parameters:
betad <- 20

betal <- 0.5

FigmaZ <- 100



* Confused about homogeneity vs. non-consistent
width of confidence intervals?

We have plotted the “observed data” (i.e. one realization of the random vector Y):
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* Confused about homogeneity vs. non-consistent
width of confidence intervals?

8
# Now we introduce the random variables:

# epsilon (unknown) is a random variable
epsilon <- rnorm(n, mean=0, sd=sqrt(sigma2))

# Y (unknown) is a random variable
Y <- beta® + betal*x + epsilon

# Sample statistics (also known as "estimators")
# can be considered as random variables:

# sample means:
xbar <- (1/n)*sum(x)
ybar <- (1/n)*sum(Y)

# sample standard deviations:
sx <- sqrt( sum((x-xbar)A2)/(n-1) )
sy <- sqrt( sum((Y-ybar)A2)/(n-1) )

# sample covariance and sample correlation:
sxy <- (1/(n-1))*sum((x-xbar)*(Y-ybar))
rxy <- sxy/(sx*sy)

# best estimators for beta® and betal parameters
betalhat <- rxy*sy/sx
beta@hat <- ybar-betalhat*xbar

VVVVVVVVVVVVVVVVVVVVYVVYVVYVYVY



* Confused about homogeneity vs. non-consistent
width of confidence intervals?

> residuals <- y - beta@hat - betalhat*x
> s <- sqrt( (1/(n-2))*sum(residualsA2))
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* Confused about homogeneity vs. non-consistent
width of confidence intervals?

# Let's plot'another a realization of the random variable "Y"

points(x,Y,pch=20,cex=4, col=rgb(0.2,0.7,0.25,alpha=0.10))
abline(beta@hat, betalhat, col=rgh(0,0,1,alpha=0.50), lwd=3)
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* Confused about homogeneity vs. non-consistent
width of confidence intervals?

# Let's plot'another a realization of the random variable "Y"

points(x,Y,pch=20,cex=4, col=rgb(0.2,0.7,0.25,alpha=0.10))
abline(beta@hat, betalhat, col=rgh(0,0,1,alpha=0.50), lwd=3)

100
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* Confused about homogeneity vs. non-consistent
width of confidence intervals?

# Let's plot-another a realization of the random variable "Y"

points(x,Y,pch=20,cex=4, col=rgb(0.2,0.7,0.25,alpha=0.10))
abline(beta@hat, betalhat, col=rgh(0,0,1,alpha=0.50), lwd=3)

100
I

\§

0 20 40 60 80 100



* Confused about homogeneity vs. non-consistent
width of confidence intervals?

# Let's plot'another a realization of the random variable "Y"

points(x,Y,pch=20,cex=4, col=rgb(0.2,0.7,0.25,alpha=0.10))
abline(beta@hat, betalhat, col=rgh(0,0,1,alpha=0.50), lwd=3)
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* Confused about homogeneity vs. non-consistent
width of confidence intervals?

# Let's plot'another a realization of the random variable "Y"

points(x,Y,pch=20,cex=4, col=rgb(0.2,0.7,0.25,alpha=0.10))
abline(beta@hat, betalhat, col=rgh(0,0,1,alpha=0.50), lwd=3)
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+ +++++++V VYV

# plot the

95% confidence interval for a series of subpopulation means:

# this should look like a confidence interval for the regr

for(myx 1in
muhat_x <-
muhat_x

lowerCI <-
upperCl <-

points(myx,
points(myx,

}

c(0,10,20,30,40,50,600,70,80,90,100)){
beta@+betal*myx

muhat_x - qt(0.975,n-2) * s * sqrt(1/n + ((myx-xbar)A2)/((n-1)*sxA2))
muhat_x + qt(0.975,n-2) * s * sqrt(1/n + ((myx-xbar)A2)/((n-1)*sxA2))

lowerCI, pch="-", cex=8, col="lightblue")
upperCI, pch="-", cex=8, col="lightblue")
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> # plot the variance for our different values of x:

> for(myx in x){

+ linesCc(myx,myx),c((beta® + betal*myx)-sqrt(sigma2),(beta® + betal*myx)
+sqrt(sigma2)),col="red",lwd=4)

+ }
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> # plot the variance for our different values of x:

> for(myx in x){

+ linesCc(myx,myx),c((beta® + betal*myx)-sqrt(sigma2),(beta® + betal*myx)
+sqrt(sigma2)),col="red",lwd=4)

+ }
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> # plot the variance for our different values of x:

> for(myx in x){

+ linesCc(myx,myx),c((beta® + betal*myx)-sqrt(sigma2),(beta® + betal*myx)
+sqrt(sigma2)),col="red",lwd=4)

+ }

| iy (z) £ tn_2.0.075 X se(fy(x)),
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* Confused about homogeneity vs. non-consistent

width of confidence intervals?
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* Predictions and prediction intervals---

Suppose we now want to make a prediction for a new value of x.

Example: Suppose we would like to predict how much money (Y),
someone aged 50 years old (X=50) will have.
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* Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y),
someone aged X=50 years old will have.

this hypothetical new person aged 50 is sometimes called “an out-of-sample unit with value x*”,
Where x*=50.

Our best estimate, also known as the “point prediction”, would be equal to b, +b,(50) = 45.1

> xstar <- 50
> point_prediction <- beta@hat + betalhat*xstar
> point_prediction
[1] 45.07117
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[1] 45.07117
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* Predictions and prediction intervals---

-

# x aﬁd n‘are f{xed vai&eg ’
x <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
n<-9

# y 1s a realization of the random variable "Y", i.e. "observed data":

y <- c(71, 54, 43, 45, 21, 11, 30, 45, 19)
xbar <- (1/n)*sum(x)

ybar <- (1/n)*sum(y)

sx <- sgrt( sum((x-xbar)A2)/(n-1) )

sy <- sqrt( sum((y-ybar)A2)/(n-1) )

sxy <- (1/(n-1))*sum((x-xbar)*(y-ybar))
rxy <- sxy/(sx*sy)

betalhat <- rxy*sy/sx

beta®hat <- ybar-betalhat*xbar

residuals <- y - beta@hat - betalhat*x

s <- sgrt( (1/(n-2))*sum(residualsA2))
plot(y~x, x1lim=c(0,100), ylim=c(0,100), pch=20, cex=3)
abline(beta@hat, betalhat)
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* Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Y (z*) = By + Byz* with error
(2.67) Y(z*) =Y (z*) = By + Biz* — [Bo + Biz* + e(z)]

= (By — Bo) + (B — B1)z* — €(z*)
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(" —2)?

(268) Var [(BO — ,BO) + (Bl — ,31);17*] + Var [6(;1;*)] — 0'2{71,—1 + [(n — 1)8%]
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Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Our prediction
. A oa . / The truth
Y (z*) = By + Byz* with error /
(2.67) Y(z*) =Y (z*) = By + Biz* — [Bo + Biz* + e(z)]
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The difference between our prediction and the truth is the error

Cov() is equal to 0, since the two
This has variance terms are independent.

(2.68) Var [(Bo — Bo) + (By — Br)z"] + Var[e(z*)] = *{n~" + (2" ~2)°

/) (n—Ds2

since Var [(Bo — o) + (B1 — B1)z*] = Var [y (z*)] from (2.66).
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Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Our prediction
. A : / The truth
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s > * s« 2 -1 (‘T* _5)2 2
(2.68) Var [(Bo — fo) + (B1 — B1)z*] + Var [e(z")] = 0*{n~" + (=P }+o?,

So the (estimated) SE of the prediction error is

1 * _ )2
&x\/1+—+(x 7) .

n (n—1)s2°

Note this does not decrease to 0 as n — oo.



* Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y),
someone aged X=60 years old will have.

Our prediction
. . . The truth
Y (z*) = By + Byz* with error \/

(2.67) Y (z*) =Y (z*) = Bo + Biz* — [Bo + Brz* + €(z")]

= (By — Bo) + (B1 — B1)z* — €(z*)
This has variance

*

> > * s« 2 -1 (:17 _5)2 2
(2.68) Var [(Bo — fo) + (B1 — B1)z*] + Var [e(z")] = 0*{n~" + (=P }+o?,

So the (estimated) SE of the prediction error is

1 * __ )2
&><\/1+—+u
n

(n—1)s2

Note this does not decrease to 0 as n — oo.

Note that variances of estimators include o2 in their equations. Estimated SEs replace the “population”
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* Predictions and prediction intervals---

Next for the 95% prediction interval for Y (z*) for an out-of-sample unit with value z*, the point prediction
is Y (z*) = By + Byz* with error

(2.67) Y (z*) —Y(z*) = By + Biz* — [Bo + Biz* + e(z*)] = (Bo — Bo) + (B1 — p1)z* — e(z*).

This has variance

(@* ~ 2
[(n —1)s2]
since Var [(Bo — B0) + (B1 — B1)z*] = Var [y (z*)] from (2.66). So the (estimated) SE of the prediction error

1S

2.69 14+ -4+ —=
(2:69) GX\/+n+(n—1)sg’

(2.68) Var [(Bo — fo) + (B1 — B1)a"] + Var [e(z*)] = 0*{n~1 + }+o?,
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and this does not decrease to 0 as n — oo.

Note that variances of estimators include o2 in their equations. Estimated SEs replace the “population”

quantity o by a sample quantity &.

The 95% prediction interval for Y (z*) for a unit (not in sample) with value x*:

A

(2.44) Y (2*) % tn_o0075 X se(E), Y(z*)=po + frz* = iy (z¥),

where E = Y (z*) — Y (2*) = jy(z*) — Y (z*) = iy (z*) — Bo — frz* — e(z*) is the prediction error.



* Predictions and prediction intervals---

> pointé(xsfar, pbint_prédiétion,'tol="pink", pch=18, cex=3)
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* Predictions and prediction intervals---

> # 95% prediction interval:

> lowerPI <- point_prediction - qt(0.975,n-2) * s * sqgrt(1/n + 1 + ((xstar-xbar)A2)/((n-1)*sxA2))
> upperPI <- point_prediction + qgt(0.975,n-2) * s * sqrt(1/n + 1 + ((xstar-xbar)A2)/((n-1)*sxA2))
>

> c(lowerPI,upperPI)

[1] 5.61226 84.53007
>

> lines(x=c(xstar,xstar),y=c(lowerPI,upperPIl), col="darkviolet",lwd=15)
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Objective:

Design and
Methods:

Results:

Conclusions:

Small Print:

Sample statistics

Age vs. Money

b, = 17.7
The purpose of this observational study was to b, = 0.55
demonstrate if, and to what extent, age is s =155
associated with money. RZ = 0.49

We collected a random sample of individuals and for each For parameter B, :
determine(?l their age.(reco.rded in years) and.the amount 05% C.I. = [().()5, 1.()5]
of money (in dollars) in their accounts. Analysis of alue 0.036
the data was done using linear regression. P-value = U.x
We obtained a random sample of n = 9 subjects. There is a

statistically significant association between age and money (p-value =0.036).

For every additional year in age, an individual’s amount of money increases

on average by an estimated of $0.55 (95% C.l. = [S0.05, $1.05]).

We found that, as hypothesized, age is associated with money.
In our sample age accounted for about half of the variability
observed in money (R?=0.49). We predict that a 50 year old will
have $45.1 (95% P.l. = [$5.6, $84.5]), whereas a 40 year

old will have $39.6 (95% P.I. = [S0.8, $78.4]).

The analysis rests on the following assumptions:

the observations are independently and identically distributed.

the response variable, money, is normally distributed.
Homoscedasticity of residuals or equal variance.

the relationship between response and predictor variables is linear.
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Sample statistics

Age vs. Money

b, = 17.7
Objective: The purpose of this observational study was to b, = 0.55
demonstrate if, and to what extent, age is s = 15.5
associated with money. RZ = 0.49
Design and
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observed in money (R?=0.49). We predict that a 50 year old will
have $45.1 (95% P.l. = [$5.6, $84.5]), whereas a 40 year
old will have $39.6 (95% P.I. = [S0.8, $78.4]).

Small Print: The analysis rests on the following assumptions:
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the response variable, money, is normally distributed.
Homoscedasticity of residuals or equal variance.

the relationship between response and predictor variables is linear.
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