Stat 306:

Finding Relationships in Data. Lecture 5
Section 2.5 (continued)

linear

Age vs. Money

regression

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Sample, $n=9$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{E}\left[\mathrm{B}_{0}\right]$	$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	se(b $\left.\mathrm{b}_{0}\right)$	C.I. for β_{0}
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{E}\left[\mathrm{B}_{1}\right]$	$\operatorname{Var}\left[\mathrm{B}_{1}\right]$	$\operatorname{se}\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~S}^{2}$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$\operatorname{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	C.I. for $\mu_{Y}(x)$

Step 0:
From θ, define estimator, $\hat{\theta}$

Step 1:

Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

```
Step 3:
Define \(\operatorname{se}(\hat{\theta})=\)
estimate of \(\sqrt{\operatorname{Var}(\hat{\Theta})}\)
```

Step 4:
Define
$(1-\alpha) \%$ C.I. $=$
$\hat{\theta} \pm c \times s e(\hat{\theta})$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{E}\left[\mathrm{B}_{0}\right]$	$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	se(b $\left.\mathrm{b}_{0}\right)$	C.I. for β_{0}
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{E}\left[\mathrm{B}_{1}\right]$	$\operatorname{Var}\left[\mathrm{B}_{1}\right]$	$\operatorname{se}\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~s}^{2}$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$\operatorname{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{C} . \mathrm{I}$. $\mu_{Y}(x)$

Population parameter or "something we would like to estimate"
β_{0}
β_{1}
σ^{2}
$\mu_{Y}(x)$

The simple linear regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where the ϵ_{i} 's are independent normal random variables with mean 0 and variance σ^{2}
Therefore:

$$
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)
$$

subpopulation mean:

$$
\mathrm{E}[Y \mid X=x]=\beta_{0}+\beta_{1} x
$$

$$
\begin{aligned}
& \text { Step 0: } \\
& \text { From } \theta \text {, define } \\
& \text { estimator, } \hat{\theta} \\
& b_{0}=\bar{y}-b_{1} \bar{x} \\
& b_{1}=r_{x y} \frac{s_{y}}{s_{x}}=\sum_{i=1}^{n} a_{i} y_{i} \quad \text {,where: } a_{i}=\frac{\left(x_{i}-\bar{x}\right)}{(n-1) s_{x}^{2}} \\
& s^{2}=\frac{\sum_{i=1}^{n} \epsilon_{i}^{2}}{n-2} \\
& \hat{\mu}_{Y}(x)=\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}=\sum_{i=1}^{n} c_{i} y_{i}, \text { where: } \\
& c_{i}=n^{-1}+a_{i}(x-\bar{x})=n^{-1}+\frac{(x-\bar{x})\left(x_{i}-\bar{x}\right)}{(n-1) s_{x}^{2}}
\end{aligned}
$$

```
Step 0:
From 0, define
estimator, \hat{0}
```


Step 1:

Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~s}^{2}$
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$

$$
\begin{aligned}
B_{0} & =\bar{Y}-B_{1} \bar{x} \\
B_{1} & =\sum_{i=1}^{n} a_{i} Y_{i}, \text { where: } a_{i}=\frac{\left(x_{i}-\bar{x}\right)}{(n-1) s_{x}^{2}} \\
S^{2} & =\frac{\sum_{i=1}^{n} \epsilon_{i}^{2}}{n-2} \\
\hat{\mu}_{Y}(x) & =\sum_{i=1}^{n} c_{i} Y_{i}, \text { where: } c_{i}=n^{-1}+\frac{(x-\bar{x})\left(x_{i}-\bar{x}\right)}{(n-1) s_{x}^{2}}
\end{aligned}
$$

Step 0:
From θ, define
estimator, $\hat{\theta}$

Step 1:
Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

Step 2:
Determine
$\mathrm{E}[\hat{\Theta}]$ (to confirm it's unbiased)
$\operatorname{Var}[\hat{\Theta}]$ (to calculate se)

Population parameter or "something e would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{E}\left[\mathrm{B}_{0}\right]$
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{E}\left[\mathrm{B}_{1}\right]$
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~S}^{2}$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$

$$
\begin{aligned}
B_{0} & =\bar{Y}-B_{1} \bar{x} \\
E\left[B_{0}\right] & =E\left[\bar{Y}-B_{1} \bar{X}\right] \\
& =\frac{1}{n} E\left[\sum_{i=1}^{n} Y_{i}\right]-\beta_{1} \bar{X} \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(\beta_{0}+\beta_{1} X_{i}\right)-\beta_{1} \bar{X} \\
& =\beta_{0}+\frac{1}{n} \sum_{i=1}^{n} \beta_{1} X_{i}-\beta_{1} \bar{X} \\
& =\beta_{0}+\beta_{1} \frac{1}{n} \sum_{i=1}^{n} X_{i}-\beta_{1} \bar{X} \\
& =\beta_{0}+\beta_{1} \bar{X}-\beta_{1} \bar{X} \\
& =\beta_{0}
\end{aligned}
$$

Therefore b_{0} is "unbiased".

Step 0:
From θ, define
estimator, $\hat{\theta}$

Step 1:
Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

Step 2:
Determine
$\mathrm{E}[\hat{\Theta}]$ (to confirm it's unbiased)
$\operatorname{Var}[\hat{\Theta}]$ (to calculate se)

Therefore b_{1} is "unbiased".

Step 0: From θ define estimator, $\hat{\theta}$

Therefore s^{2} is "unbiased".

Step 0: From θ, de estimator,	Step 1: Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$		Step 2: Determine $\mathrm{E}[\hat{\Theta}]$ (to confirm it's unbiased) $\operatorname{Var}[\hat{\Theta}]$ (to calculate se)	
Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	$\hat{\mu}_{Y}(x)=\sum_{i=1} c_{i} Y_{i}$, where: $c_{i}=n^{-1}+\frac{(x-\bar{x})\left(x_{i}-\bar{x}\right)}{(n-1) s_{x}^{2}}$
β_{0}	b_{0}	B_{0}	$\mathrm{E}\left[\mathrm{B}_{0}\right]$ unbiased	$\begin{aligned} & \mathrm{E}[\mu Y(X)]=\sum_{i=1} c_{i} \mathrm{E}\left(Y_{i}\right)=\sum_{i=1} c_{i}\left(\beta_{0}+\beta_{1} x_{i}\right) \\ & (2.60) \end{aligned}$
β_{1}	b_{1}	B_{1}	$\mathrm{E}\left[\mathrm{B}_{1}\right]$ unbiased	
σ^{2}	s^{2}	S^{2}	E[S²] unbiased	$\begin{align*} (2.62) & =\beta_{0}+\beta_{1} \bar{x}+\beta_{1}(x-\bar{x}) \sum_{i=1} a_{i} x_{i} \tag{2.61}\\ & =\beta_{0}+\beta_{1} \bar{x}+\beta_{1}(x-\bar{x}) \end{align*}$
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$	$=\beta_{0}+\beta_{1} x$

Therefore the subpopulation mean" is "unbiased".

Step 1:

Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

Step 2:

Determine
$\mathrm{E}[\hat{\Theta}]$ (to confirm it's unbiased)
$\operatorname{Var}[\hat{\Theta}]$ (to calculate se)

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{E}\left[\mathrm{B}_{0}\right]$ unbiased	$\operatorname{Var[\mathrm {B}_{0}]}$
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{E}\left[\mathrm{B}_{1}\right]$ unbiased	$\operatorname{Var[\mathrm {B}_{1}]}$
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~S}^{2}$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$ unbiased	$\operatorname{Var[\mathrm {S}^{2}]}$
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$ unbiased	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$

Step 0: From θ, define estimator, $\hat{\theta}$			ep 2: etermine $\hat{\Theta}]$ (to confirm it's unbiased) $\operatorname{Var}[\hat{\Theta}]$ (to calculate se)	$\begin{aligned} \hat{\mu}_{Y}(x)=\sum_{i=1}^{n} c_{i} Y_{i}, & \text { where: } \\ & c_{i}=n^{-1}+\frac{(x-\bar{x})\left(x_{i}-\bar{x}\right)}{(n-1) s_{x}^{2}} \end{aligned}$
Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Expected Value of the estimator	Variance of the estimator	
β_{0}	b_{0}	$E\left[B_{0}\right]$ unbiased	$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	(2.63) $\operatorname{Var}\left[\hat{\mu}_{Y}(x)\right]=\sum_{i=1} c_{i}^{2} \operatorname{Var}\left(Y_{i}\right)$
β_{1}	b_{1}	$\mathrm{E}\left[\mathrm{B}_{1}\right]$ unbiased	$\operatorname{Var}\left[\mathrm{B}_{1}\right]$	$=\sigma^{2} \sum_{i=1} c_{i}^{2}$
σ^{2}	s^{2}	$\mathrm{E}\left[\mathrm{S}^{2}\right]$ unbiased	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$=\sigma^{2} \sum_{i=1}\left\{n^{-1}+(x-\bar{x})\left(x_{i}-\bar{x}\right) /\left[(n-1) s_{x}^{2}\right]\right\}^{2}$
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$ unbiased	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$	$\sigma^{2}\left\{n^{-1}+\frac{(x-\bar{x})^{2} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]^{2}}+0\right\}$
$(2.66)=\sigma^{2}\left\{n^{-1}+\frac{(x-\bar{x})^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}$				

$$
\begin{align*}
& \text { Step 3: } \\
& \text { Define } \\
& \operatorname{se}(\hat{\theta})= \\
& \text { estimate of } \sqrt{\operatorname{Var}(\hat{\Theta})} \\
& \text { Step 4: } \\
& \text { Define } \\
& (1-\alpha) \% \text { C.I. }= \\
& \hat{\theta} \pm c \times s e(\hat{\theta}) \\
& \operatorname{Var}\left(\hat{B}_{1}\right)=\frac{\sigma^{2}}{(n-1) s_{x}^{2}} \\
& \Rightarrow \quad s e\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}}{\sqrt{n-1} s_{x}} \tag{2.46}\\
& \text { where: } \\
& \hat{\sigma}=s=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}}
\end{align*}
$$

\Rightarrow We will skip this....

Step 3: Define $\operatorname{se}(\hat{\theta})=$ estimate of $\sqrt{\operatorname{Var}(\hat{\theta})}$

Variance of the estimator	Standard Error of estimator	Confidence Interval
$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	se(b$\left.{ }_{0}\right)$	C.I. for β_{0}
$\operatorname{Var}\left[\mathrm{~B}_{1}\right]$	$\operatorname{se}\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
$\operatorname{Var}\left[\mathrm{~S}^{2}\right]$	$\operatorname{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
		C.I. for
$\mu_{Y}(x)$		

$\operatorname{Var}\left[\hat{\mu}_{Y}(x)\right]=\sigma^{2}\left\{n^{-1}+\frac{(x-\bar{x})^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}$	Step 3: Define $\operatorname{se}(\hat{\theta})=$ estimate of $\sqrt{\operatorname{Var}(\hat{\Theta})}$		Step 4: Define $(1-\alpha) \%$ C.I. $=$ $\hat{\theta} \pm c \times s e(\hat{\theta})$
	Variance of the estimator	Standard Error of estimator	Confidence Interval
	$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	$\mathrm{se}\left(\mathrm{b}_{0}\right)$	C.I. for β_{0}
$\Rightarrow s e\left(\hat{\mu}_{Y}(x)\right)=\hat{\sigma} \times \sqrt{\frac{1}{1}+\frac{(x-\bar{x})^{2}}{1)^{2}}}$	$\operatorname{Var}\left[\mathrm{B}_{1}\right]$	$\mathrm{se}\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$\mathrm{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
(2.47)			
where: $\hat{\sigma}=s=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}}$	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	C.I. for $\mu_{Y}(x)$

A confidence interval for a parameter θ commonly has the form
Step 4:

$$
\hat{\theta} \pm c \times s e(\hat{\theta})
$$

$$
b_{0}=\bar{y}-b_{1} \bar{x}
$$

$$
s e\left(b_{0}\right)=s \sqrt{\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)}
$$

95% C.I. for $\beta_{0}=$

$$
\begin{aligned}
& \bar{y}-b_{1} \bar{X}-t_{n-2,0.975} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)} \\
& \quad \bar{y}-b_{1} \bar{X}+t_{n-2,0.975} \cdot s \sqrt{\left(\frac{1}{n}+\frac{\bar{X}^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right)}
\end{aligned}
$$

Standard Error of estimator	Confidence Interval
se(b $\left.b_{0}\right)$	C.I. for β_{0}
	C.I. for β_{1}
se $\left(b_{1}\right)$	C.I. for σ^{2}
se(s $\left.\mathrm{s}^{2}\right)$	C.I. for $\mu_{Y}(x)$
$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	

$$
\begin{aligned}
& \text { Step 4: } \\
& \text { Define } \\
& (1-\alpha) \% \text { C.I. }= \\
& \hat{\theta} \pm c \times s e(\hat{\theta}) \\
& s e\left(\hat{\beta}_{1}\right)=\frac{\hat{\sigma}}{\sqrt{n-1} s_{x}} \\
& \text { Then we have : } \\
& \text { 95\% C.I. For } \beta_{1}= \\
& {\left[b_{1}-t_{n-2,0.975} \frac{\hat{\sigma}}{\sqrt{n-1} s_{x}}, \quad b_{1}+t_{n-2,0.975} \frac{\hat{\sigma}}{\sqrt{n-1} s_{x}}\right]} \\
& \text { where: } \quad b_{1}=r_{x y} \frac{s_{y}}{s_{x}} \\
& \hat{\sigma}=s=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}}
\end{aligned}
$$

Sten 4: Define $(1-\alpha) \% \mathrm{c.I}=$ $\hat{\theta} \pm c \times s e(\hat{\theta})$

Step 4:
Define
$(1-\alpha) \%$ C.I. $=$
$\hat{\theta} \pm c \times \operatorname{se}(\hat{\theta})$

The 95% confidence interval for subpopulation mean $\mu_{Y}(x)=\beta_{0}+\beta_{1} x$ is

$$
\hat{\mu}_{Y}(x) \pm t_{n-2,0.975} \times s e\left(\hat{\mu}_{Y}(x)\right)
$$

where:

$$
s e\left(\hat{\mu}_{Y}(x)\right)=\hat{\sigma} \times \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{(n-1) s_{x}^{2}}}
$$

and:

$$
\hat{\mu}_{Y}(x)=\hat{\beta}_{0}+\hat{\beta}_{1} x .
$$

and:

$$
\hat{\sigma}=s=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}}
$$

Standard Error of estimator	Confidence Interval
se(b $\left.b_{0}\right)$	C.I. for β_{0}
se $\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
se(s $\left.\mathrm{s}^{2}\right)$	C.I. for σ^{2}
$s e\left(\hat{\mu}_{Y}(x)\right)$	C.I. for $\mu_{Y}(x)$

Step 0:
From θ, define estimator, $\hat{\theta}$

Step 1:

Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

```
Step 3:
Define \(\operatorname{se}(\hat{\theta})=\)
estimate of \(\sqrt{\operatorname{Var}(\hat{\Theta})}\)
```

Step 4:
Define
$(1-\alpha) \%$ C.I. $=$
$\hat{\theta} \pm c \times s e(\hat{\theta})$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{E}\left[\mathrm{B}_{0}\right]$	$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	se(b $\left.\mathrm{b}_{0}\right)$	C.I. for β_{0}
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{E}\left[\mathrm{B}_{1}\right]$	$\operatorname{Var}\left[\mathrm{B}_{1}\right]$	$\operatorname{se}\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~s}^{2}$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$\operatorname{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{C} . \mathrm{I}$. $\mu_{Y}(x)$

- Questions?
- Confused about homogeneity vs. non-consistent width of confidence intervals?

- Confused about homogeneity vs. non-consistent width of confidence intervals?
> \#
> \# Linear regression example
> \#
> \# x and n are fixed values
$>x<-c(82,45,71,22,29,9,12,18,24)$
$>n<-9$
\# y is a realization of the random variable "Y", i.e. "observed data":
> y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10)
> plot(y~x, xlim=c(0,100), ylim=c(0,100), pch=20, cex=3)
\# beta0, beta1, and sigma2 are population parameters
> \# let's pretend that we know the values of these parameters:
> beta0 <- 20
> beta1 <- 0.5
> sigma2 <- 100
- Confused about homogeneity vs. non-consistent width of confidence intervals?

We have plotted the "observed data" (i.e. one realization of the random vector \mathbf{Y}):

- Confused about homogeneity vs. non-consistent width of confidence intervals?

```
> ############################################################
> # Now we introduce the random variables:
>
> # epsilon (unknown) is a random variable
> epsilon <- rnorm(n, mean=0, sd=sqrt(sigma2))
>
> # Y (unknown) is a random variable
> Y <- beta0 + beta1*x + epsilon
>
> # Sample statistics (also known as "estimators")
> # can be considered as random variables:
>
> # sample means:
> xbar <- (1/n)*sum(x)
> ybar <- (1/n)*sum(Y)
>
> # sample standard deviations:
> sx <- sqrt( sum((x-xbar)^2)/(n-1) )
> sy <- sqrt( sum((Y-ybar)^2)/(n-1) )
>
> # sample covariance and sample correlation:
> sxy <- (1/(n-1))*sum((x-xbar)*(Y-ybar))
> rxy <- sxy/(sx*sy)
>
> # best estimators for beta0 and beta1 parameters
> beta1hat <- rxy*sy/sx
> beta0hat <- ybar-beta1hat*xbar
```

- Confused about homogeneity vs. non-consistent width of confidence intervals?
> residuals <- y - beta0hat - beta1hat*x
$>s<-\operatorname{sqrt}((1 /(n-2)) *$ sum(residuals^2))

- Confused about homogeneity vs. non-consistent width of confidence intervals?
> \# Let's plot another a realization of the random variable "Y"
> points ($x, Y, p c h=20, c e x=4$, col=rgb(0.2,0.7,0.25, alpha=0.10))
> abline(beta0hat, beta1hat, col=rgb(0,0,1,alpha=0.50), lwd=3)

- Confused about homogeneity vs. non-consistent width of confidence intervals?
> \# Let's plot another a realization of the random variable "Y"
> points ($x, Y, p c h=20, c e x=4$, col=rgb(0.2,0.7,0.25, alpha=0.10))
> abline(beta0hat, beta1hat, col=rgb(0,0,1,alpha=0.50), lwd=3)

- Confused about homogeneity vs. non-consistent width of confidence intervals?
> \# Let's plot another a realization of the random variable "Y"
> points ($x, Y, p c h=20, c e x=4$, col=rgb(0.2,0.7,0.25, alpha=0.10))
> abline(beta0hat, beta1hat, col=rgb(0,0,1,alpha=0.50), lwd=3)

- Confused about homogeneity vs. non-consistent width of confidence intervals?
> \# Let's plot another a realization of the random variable "Y"
> points ($x, Y, p c h=20, c e x=4$, col=rgb(0.2,0.7,0.25, alpha=0.10))
> abline(beta0hat, beta1hat, col=rgb(0,0,1,alpha=0.50), lwd=3)

- Confused about homogeneity vs. non-consistent width of confidence intervals?
> \# Let's plot another a realization of the random variable "Y"
> points(x,Y,pch=20, cex=4, col=rgb(0.2,0.7,0.25,alpha=0.10))
> abline(beta0hat, beta1hat, col=rgb(0,0,1,alpha=0.50), lwd=3)

> \# plot the 95\% confidence interval for a series of subpopulation means:
\# this should look like a confidence interval for the regr
> for(myx in c(0,10,20,30,40,50,60,70,80,90,100))\{
+ muhat_x <- beta0+beta1*myx
+ muhat_x
+ lowerCI <- muhat_x - qt(0.975,n-2) * s * sqrt(1/n + ((myx-xbar)^2)/((n-1)*sx^2)) + upperCI <- muhat_x + qt(0.975,n-2) * s * sqrt(1/n + ((myx-xbar)^2)/((n-1)*sx^2))
+ points(myx, lowerCI, pch="-", cex=8, col="lightblue") + points(myx, upperCI, pch="-", cex=8, col="lightblue")
$+\}$

> \# plot the variance for our different values of x :
> for(myx in x) \{
+ lines(c(myx,myx),c((beta0 + beta1*myx)-sqrt(sigma2),(beta0 + beta1*myx) +sqrt(sigma2)), col="red", lwd=4)
+ \}

> \# plot the variance for our different values of x :
> for(myx in x) \{
+ lines(c(myx,myx),c((beta0 + beta1*myx)-sqrt(sigma2),(beta0 + beta1*myx) +sqrt(sigma2)), col="red", lwd=4)
+ \}

> \# plot the variance for our different values of x :
> for(myx in x)\{
+ lines(c(myx,myx),c((beta0 + beta1*myx)-sqrt(sigma2),(beta0 + beta1*myx) +sqrt(sigma2)), col="red", lwd=4)
+ \}

- Confused about homogeneity vs. non-consistent width of confidence intervals?

- Predictions and prediction intervals---

Suppose we now want to make a prediction for a new value of x.
Example: Suppose we would like to predict how much money (Y), someone aged 50 years old ($X=50$) will have.

- Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y), someone aged $X=50$ years old will have.
this hypothetical new person aged 50 is sometimes called "an out-of-sample unit with value $x^{* *}$ ", Where $x^{*}=50$.

Our best estimate, also known as the "point prediction", would be equal to $b_{0}+b_{1}(50)=45.1$
> xstar <- 50
> point_prediction <- beta0hat + beta1hat*xstar
> point_prediction
[1] 45.07117

- Predictions and prediction intervals---
> \# x and n are fíxed values
$>x<-c(82,45,71,22,29,9,12,18,24)$
$>n<-9$
> \# y is a realization of the random variable "Y", i.e. "observed data":
$\mathrm{y}<-\mathrm{c}(71,54,43,45,21,11,30,45,10)$
xbar <- (1/n)*sum(x)
ybar <- (1/n)*sum(y)
sx <- $\operatorname{sqrt}\left(\operatorname{sum}\left((x-x b a r)^{\wedge} 2\right) /(n-1)\right)$
$>$ sy <- sqrt($\operatorname{sum}((y-y b a r) \wedge 2) /(n-1))$
> sxy <- (1/(n-1))*sum((x-xbar)*(y-ybar))
> rxy <- sxy/(sx*sy)
> beta1hat <- rxy*sy/sx
> beta0hat <- ybar-beta1hat*xbar
residuals <- y - beta0hat - beta1hat*x
s <- sqrt((1/(n-2))*sum(residuals^2))
plot $(y \sim x, x l i m=c(0,100)$, $y l i m=c(0,100)$, $p c h=20, ~ c e x=3)$
> abline(beta0hat, beta1hat)
> xstar <- 50
> point_prediction <- beta0hat + beta1hat*xstar > point_prediction
[1] 45.07117
> lines(x=c(xstar, xstar), c(0,100))

- Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error
(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

- Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

The difference between our prediction and the truth is the error

- Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.

The difference between our prediction and the truth is the error

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2} \tag{2.68}
\end{equation*}
$$

- Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

The difference between our prediction and the truth is the error

This has variance $\operatorname{Cov}()$ is equal to 0 , since the two terms are independent.

since $\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]=\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ from (2.66).

- Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2}, \tag{2.68}
\end{equation*}
$$

So the (estimated) SE of the prediction error is

$$
\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}
$$

Note this does not decrease to 0 as $n \rightarrow \infty$.

- Predictions and prediction intervals---

Example: Suppose we would like to predict how much money (Y), someone aged $\mathrm{X}=60$ years old will have.
$\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

(2.67) $\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]$

$$
=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right)
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2} \tag{2.68}
\end{equation*}
$$

So the (estimated) SE of the prediction error is

$$
\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}
$$

Note this does not decrease to 0 as $n \rightarrow \infty$.
Note that variances of estimators include σ^{2} in their equations. Estimated SEs replace the "population" quantity σ by a sample quantity $\hat{\sigma}$.

- Predictions and prediction intervals---

Next for the 95% prediction interval for $Y\left(x^{*}\right)$ for an out-of-sample unit with value x^{*}, the point prediction is $\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

$$
\begin{equation*}
\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right) . \tag{2.67}
\end{equation*}
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2}, \tag{2.68}
\end{equation*}
$$

since $\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]=\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ from (2.66). So the (estimated) SE of the prediction error is

$$
\begin{equation*}
\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}, \tag{2.69}
\end{equation*}
$$

and this does not decrease to 0 as $n \rightarrow \infty$.
Note that variances of estimators include σ^{2} in their equations. Estimated SEs replace the "population" quantity σ by a sample quantity $\hat{\sigma}$.

- Predictions and prediction intervals---

Next for the 95% prediction interval for $Y\left(x^{*}\right)$ for an out-of-sample unit with value x^{*}, the point prediction is $\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

$$
\begin{equation*}
\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right) . \tag{2.67}
\end{equation*}
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2}, \tag{2.68}
\end{equation*}
$$

since $\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]=\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ from (2.66). So the (estimated) SE of the prediction error is

$$
\begin{equation*}
\operatorname{se}(\mathrm{E})=\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}, \tag{2.69}
\end{equation*}
$$

and this does not decrease to 0 as $n \rightarrow \infty$.
Note that variances of estimators include σ^{2} in their equations. Estimated SEs replace the "population" quantity σ by a sample quantity $\hat{\sigma}$.

- Predictions and prediction intervals---

Next for the 95% prediction interval for $Y\left(x^{*}\right)$ for an out-of-sample unit with value x^{*}, the point prediction is $\hat{Y}\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}$ with error

$$
\begin{equation*}
\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{B}_{0}+\hat{B}_{1} x^{*}-\left[\beta_{0}+\beta_{1} x^{*}+\epsilon\left(x^{*}\right)\right]=\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}-\epsilon\left(x^{*}\right) . \tag{2.67}
\end{equation*}
$$

This has variance

$$
\begin{equation*}
\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]+\operatorname{Var}\left[\epsilon\left(x^{*}\right)\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\}+\sigma^{2}, \tag{2.68}
\end{equation*}
$$

since $\operatorname{Var}\left[\left(\hat{B}_{0}-\beta_{0}\right)+\left(\hat{B}_{1}-\beta_{1}\right) x^{*}\right]=\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ from (2.66). So the (estimated) SE of the prediction error is

$$
\begin{equation*}
\operatorname{se}(\mathrm{E})=\hat{\sigma} \times \sqrt{1+\frac{1}{n}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}, \tag{2.69}
\end{equation*}
$$

and this does not decrease to 0 as $n \rightarrow \infty$.
Note that variances of estimators include σ^{2} in their equations. Estimated SEs replace the "population" quantity σ by a sample quantity $\hat{\sigma}$.

The 95% prediction interval for $Y\left(x^{*}\right)$ for a unit (not in sample) with value x^{*} :

$$
\begin{equation*}
\hat{Y}\left(x^{*}\right) \pm t_{n-2,0.975} \times \operatorname{se}(E), \hat{Y}\left(x^{*}\right)=\hat{\beta}_{0}+\hat{\beta}_{1} x^{*}=\hat{\mu}_{Y}\left(x^{*}\right) \tag{2.44}
\end{equation*}
$$

where $E=\hat{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{\mu}_{Y}\left(x^{*}\right)-Y\left(x^{*}\right)=\hat{\mu}_{Y}\left(x^{*}\right)-\beta_{0}-\beta_{1} x^{*}-\epsilon\left(x^{*}\right)$ is the prediction error.

- Predictions and prediction intervals---
> points(xstar, point_prediction, col="pink", pch=18, cex=3)

- Predictions and prediction intervals---

```
> # 95% prediction interval:
> lowerPI <- point_prediction - qt(0.975,n-2) * s * sqrt(1/n + 1 + ((xstar-xbar)^2)/((n-1)*sx^2))
> upperPI <- point_prediction + qt(0.975,n-2) * s * sqrt(1/n + 1 + ((xstar-xbar)^2)/((n-1)*sx^2))
> c(lowerPI,upperPI)
[1] 5.61226 84.53007
> lines(x=c(xstar,xstar),y=c(lowerPI,upperPI), col="darkviolet",lwd=15)
```


Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

$b_{0}=17.7$
$b_{1}=0.55$
$\mathrm{s}=15.5$
$R^{2}=0.49$

Results: We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of \$0.55 (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.

Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

$b_{0}=17.7$
$b_{1}=0.55$
$\mathrm{s}=15.5$
$R^{2}=0.49$

Results: We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of \$0.55 (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.

Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

$b_{0}=17.7$
$b_{1}=0.55$
$\mathrm{s}=15.5$
$R^{2}=0.49$

Results: We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of \$0.55 (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.

Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

$b_{0}=17.7$
$b_{1}=0.55$
$\mathrm{s}=15.5$
$R^{2}=0.49$

Results: We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of \$0.55 (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.

Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

$b_{0}=17.7$
$b_{1}=0.55$
$\mathrm{s}=15.5$
$R^{2}=0.49$

Results: We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of \$0.55 (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.
- Questions?

