
Stat	306:		
Finding	Rela1onships	in	Data.	

Lecture	3	
Residuals	and	2.2	Sta1s1cal	linear	regression	model	



Age	vs.	Money	

Dependent variable 

 X 

Independent variable 

       Y 

Popula'on	

Dependent variable 

 X 

Independent variable 

       Y dollars	($)	
In	bank	account	

μ0	,	 σ2				μ1	,	
	

Popula1on	
parameters	

Hypothesis	Test	
H0	:	μ0	=	μ1	
H1	:	μ0	≠	μ1	
	

Sample,	n=9	

old	

young	

old	
old	

young	

young	
young	

young	
young	

X                      y Sample	
sta1s1cs	

old	(0)	
	
young	(1)	

t	=	2.68,	df	=	7	
p-value	=	0.03	
95%	C.I.	=	[3.4,	54.6]	

71	
	
54	
43	
	
45	
21	
11	
	
30	
45	
10	
	

t-test	



Age	vs.	Money	

Popula'on	

dollars	($)	
In	bank	account	

Popula1on	
parameters	

Hypothesis	Test	

Sample,	n=9	
Sample	sta1s1cs	

β0	,	 σ2				β1	,	
	

H0	:	β1	=	0	
H1	:	β1	≠	0	
	

82	

22	

45	
71	

29	

12	
9	

18	
24	

X       y 

71	
	

54	
	

43	
	
45	
21	
11	
	
30	
45	
10	
	

Age	in	
Years		

PREDICTOR variable 

 X 

RESPONSE variable 

       Y 

b0			=		17.7	
b1			=		0.55	
s					=		15.5	
R2				=		0.49	
	

linear	
regression	

For	parameter	β1	:		
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Sample	sta1s1cs	

Formulas	as	wri^en	in	the	course	notes:	 Formulas	wri^en	in	R	code:	



	 	y	=	0	+	1x 	 	 	 	 	 	S(b0,b1)	=	2933.5	
	 	y	=	25	+	0.25x 	 	 	 	 	S(b0,b1)	=	2251.5	
	 	y	=	30	+	0.5x 	 	 	 	 	S(b0,b1)	=	2725.0	

	 	 	y	=	20	+	1x	 	 	 	 	 	S(b0,b1)	=	5712.0	
	 	y	=	17.7	+	0.55x 	 	 	 	S(b0,b1)	=	1688.4	
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Age	vs.	Money	
Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	money.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	money	(in	dollars)	in	their	accounts.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	money.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		



Least	Squares	Solu'on:	

Predicted	values:	

We	predict	that	a	50	year	old	will	have	$45.1,	whereas	a	40	year	old	will	have	$39.6.	

45.1	=	17.67	+	0.548*50	
39.6	=	17.67	+	0.548*40	
	



Least	Squares	Solu'on:	

Predicted	values:	
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Residuals	
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Residuals	

We	have:	

Therefore:	



3.8	Residual	Plots	
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Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	
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Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	
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(1)	Plot	of	residuals	versus	predicted	values.	

3.8	Residual	Plots	

Homoscedas'city	of	
residuals	or	“equal	variance”	

(2)	Plot	of	residuals	versus	explanatory	value	



(1)	Plot	of	residuals	versus	predicted	values:	
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(1)	Plot	of	residuals	versus	predicted	values:	
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or	“not	equal	variance”	

30 40 50 60

-6
-4

-2
0

2
4

6

yhat

re
si
du
al
s



3.8	Residual	Plots	
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(2)	Plot	of	residuals	versus	explanatory	value:	
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3.8	Residual	Plots	
(2)	Plot	of	residuals	versus	explanatory	value:	
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3.8	Residual	Plots	
(1)	Plot	of	residuals	versus	predicted	values.	
(2)	Plot	of	residuals	versus	explanatory	value	
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3.8	Residual	Plots	
(1)	Plot	of	residuals	versus	predicted	values.	
(2)	Plot	of	residuals	versus	explanatory	value	
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3.8	Residual	Plots	
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3.8	Residual	Plots	

The	response	variable		
is	normally	distributed.	

(3)	Normal	quan'le	plot	of	residuals.	



(3)	Normal	quan'le	plot	of	residuals	:	

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-2
0

-1
0

0
10

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s
3.8	Residual	Plots	 The	response	variable		

is	normally	distributed.	



3.8	Residual	Plots	

(2)	(1)	

(3)	

now	back	to	Chapter	2….	



2.1.3	…	Residuals	



•  Sec'on	2.1	has	the	mathema1cs	leading	to	the	least	squares	line.		

•  Sec'on	2.2	introduces	the	simple	linear	regression	model	(predic1on	
with	one	explanatory	variable)	that	is	formulated	for	a	predic1ve	
equa1on.	This	is	needed	to	quan1fy	the	variability	of	the	coefficients	
of	the	best-fiqng	line,	when	different	samples	are	taken	from	the	
popula1on.		

•  Sec'on	2.5	has	intervals	for	simple	linear	regression:	the	confidence	
interval	for	the	slope	of	the	least	square	line,	confidence	intervals	for	
subpopula1on	means,	and	predic1on	intervals	for	a	future	or	out-of-
sample	Y	given	x∗.		

•  Sec'on	2.6	has	an	explana1on	of	Student	t	quan1les	used	in	the	interval	es1mates.	

Chapter	2	



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

What	is	a	random	variable?	



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

What	is	a	random	variable?	
A	quan1ty	for	which	it	is	impossible	to	know	with	100%	certainty	it’s	value.	



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

What	is	a	random	variable?	
“A	random	variable,	Y,	is	a	variable	whose	possible	values	
are	numerical	outcomes	of	a	random	phenomenon.”	



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

Three	Examples	of	a	Random	Variable	
	
“A	random	variable,	Y,	is	a	variable	whose	possible	values	are	numerical	
	outcomes	of	a	random	phenomenon.”	
	
Example	1:	Y	is	the	unknown	result	of	a	rolling	a	die	(1,	2,	3,	4,	5	or	6)	
	
	
Example	2:	Y	is	the	unknown	result	of	a	coin	flip	(“heads”	or	“tails”)	
	
	
Example	3:	Y	is	the	unknown	amount	of	money	that	a	random	person	walking		

	 				on	the	street	has	in	their	bank	account.	



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

“A	random	variable,	Y,	is	a	variable	whose	possible	values	are		
numerical	outcomes	of	a	random	phenomenon.”	
	
	
	
Example	1:	Y	is	the	unknown	result	of	rolling	a	die	(1,	2,	3,	4,	5	or	6)	
	
	
Y	is	a	random	variable.		All	we	can	know	about	Y	is	that:	

		
	Pr(Y=1)	=	1/6	
	Pr(Y=2)	=	1/6	
	Pr(Y=3)	=	1/6	
	Pr(Y=4)	=	1/6	
	Pr(Y=5)	=	1/6	
	Pr(Y=6)	=	1/6	

	



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

“A	random	variable,	Y,	is	a	variable	whose	possible	values		
are	numerical	outcomes	of	a	random	phenomenon.”	
	
	
Example	2:	Y	is	the	unknown	result	of	a	coin	flip	(“heads”	or	“tails”)	
	
Once	we	observe	the	result	of	the	coin	flip	we	have	“y”.	
“y”	is	not	random	variable	it	is	a	“realiza1on	of	a	random	variable”	also	known	as	“data”.	
	
Y	is	a	random	variable	that	follows	a	Bernoulli(	θ	)	distribu1on:	
	

	 	Y	~	Bern(	θ	)	
	

	 	where	θ	is	a	popula1on	parameter.			
	 	For	a	“fair	coin”,		θ	=	0.5	

	
	
	
	



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		
“A	random	variable,	Y,	is	a	variable	whose	possible	values		
are	numerical	outcomes	of	a	random	phenomenon.”	
	
Example	3:	Y	is	the	unknown	amount	of	money	that	a	random	person	

	 	 	has	in	their	bank	account.	
	
Y	is	a	random	variable	that	may	depend	on	the		
age	(X)	of	the	random	person.	
	
Let	us	assume	that	this	dependence	is	linear	such	that:	
	
	

	Y	=	β0		+	β1X	+	ε								and					ε	~	Normal	(0,	σ2)	
		
	 	 	where		β0		,	β1,	and	σ2	are	popula1on	parameters.		
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Y	is	a	random	variable	that	may	depend	on	X.	
	
We	assume	that	this	dependence	is	linear	such	that:	
	
	

	Y	=	β0		+	β1X	+	ε								and					ε	~	Normal	(0,	σ2)	
		
	 	 	where		β0		,	β1,	and	σ2	are	popula1on	parameters.		

		
		



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		
Y	is	a	random	variable	that	may	depend	on	X.	
	
We	assume	that	this	dependence	is	linear	such	that:	
	
	

	Y	=	β0		+	β1X	+	ε								and					ε	~	Normal	(0,	σ2)	
		
	 	 	where		β0		,	β1,	and	σ2	are	popula1on	parameters.	
	 	 		
	 	 	ε	is	not	a	parameter.	ε	is	a	“random	variable”.	

	
We	have	n	random	variables.		For	i	=	1,	…,	n	:	
	

	 	Yi		~		Normal	(β0		+	β1Xi	,	σ2)	
	

		
		



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

		
		



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

		
		



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

		
		



Ques1ons?			

What	is	a	random	variable?	
“A	random	variable,	Y,	is	a	variable	whose	possible	values	
are	numerical	outcomes	of	a	random	phenomenon.”	
	
For	a	Random	Variable,	Y,	we	typically	want	to	talk	about	
the	Expecta'on	and	Variance:	
	
Example	1:					E[Y]	=	3.5		 	 	 	Var(Y)	=	2.92	
	
Example	2:					E[Y]	=	0.5		 	 	 	Var(Y)	=	0.25	
	
Example	3:					E[Y]	=	β0		+	β1X			 	Var(Y)	=	σ2	
	

		

Sec'on	2.2	-	Sta1s1cal	linear	regression	model		



	
Example	1:	All	we	can	know	about	Y	is	that:	

	Pr(Y=1)	=	1/6 	Pr(Y=2)	=	1/6 	Pr(Y=3)	=	1/6	
	Pr(Y=4)	=	1/6 	Pr(Y=5)	=	1/6 	Pr(Y=6)	=	1/6	

	
	
	
Using	the	defini1ons	of	Expecta1on	and	Variance	we	can	
calculate:	
	
E[Y]	=	3.5			 	 	Var(Y)	=	2.92	
	
or: 		

Sec'on	2.2	-	Sta1s1cal	linear	regression	model		



	
Example	2:	All	we	can	know	about	Y	is	that:	

	Pr(Y=0)	=	1-θ 		
	Pr(Y=1)	=	θ		

	
	
	
Using	the	defini1ons	of	Expecta1on	and	Variance	we	can	
calculate:	
	
E[Y]	=	θ 	 	Var[Y]	=	θ	(1-θ) 	 	 		
	
or: 		

Sec'on	2.2	-	Sta1s1cal	linear	regression	model		



Example	3	for	a	fixed	value	of	X:	
		

Let	X=20.	
	
Y	=	β0		+	β120	+	ε								and					ε	~	Normal	(0,	σ2)	
	
Therefore:	Y	~	Normal	(β0		+	β120	,	σ2)	
	
Using	proper1es	of	the	Normal	distribu1on:	
	
E[Y]	=	β0		+	β120	 	 	 	Var(Y)	=	σ2		
	
	

Sec'on	2.2	-	Sta1s1cal	linear	regression	model		



Example	3	for	a	fixed	value	of	X:	
		

Y	~	Normal	(β0		+	β120	,	σ2)	
	
	

Sec'on	2.2	-	Sta1s1cal	linear	regression	model		

Let’s	take	a	large	sample	of	Y	and	look	at	the	distribu1on	with	a	histrogram:	
	



Example	3	for	a	fixed	value	of	X=20:	
		

Y	~	Normal	(β0		+	β120	,	σ2)	
	
	

Sec'on	2.2	-	Sta1s1cal	linear	regression	model		
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Example	3	for	a	fixed	value	of	X=40:	
		

X	=	40	,	Y	~	Normal	(β0		+	β140	,	σ2)	
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Example	3	for	a	fixed	value	of	X=60:	
		

X	=	60	,	Y	~	Normal	(β0		+	β160	,	σ2)	
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Example	3	for	a	fixed	value	of	X=80:	
		

X	=	80	,	Y	~	Normal	(β0		+	β180	,	σ2)	
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Example	3	for	a	fixed	value	of	X=80:	
		

X	=	80	,	Y	~	Normal	(β0		+	β180	,	σ2)	
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3.8	Residual	Plots	
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