Stat 306:
 Finding Relationships in Data. Lecture 3

Residuals and 2.2 Statistical linear regression model

t-test

Age vs. Money

Dependent variable

Independent variable

Sample, n=9

Population

Population parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \mu_{0}=\mu_{1} \\
& H_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Sample
statistics

$$
\begin{aligned}
& \bar{y}_{0}=56 \\
& \bar{y}_{1}=27 \\
& \bar{y}_{0}-\bar{y}_{1}=29 \\
& s_{p}=10.81 \\
& t=2.68, d f=7 \\
& p \text {-value }=0.03 \\
& 95 \% \text { C.I. }=[3.4,54.6]
\end{aligned}
$$

linear
 Age vs. Money

RESPONSE variable

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Sample, $\mathrm{n}=9$

Sample statistics		χ	y
$\mathrm{b}_{0}=17.7$		82	71
$\mathrm{b}_{1}=0.55$		45	54
$\mathrm{s}=15.5$		45	43
$\mathrm{R}^{2}=0.49$		71	43
	i	22	45
For parameter β_{1}	T	29	21 11
95\% C.I. $=[0.05,1.05]$	i	12	30
p-value $=0.036$	T	18	45
	*	24	10

Sample statistics

$$
\begin{aligned}
& \bar{x}=n^{-1} \sum_{i=1}^{n} x_{i}, s_{x}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} /(n-1)}, \\
& \bar{y}=n^{-1} \sum_{i=1}^{n} y_{i}, s_{y}=\sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} /(n-1)} . \\
& s_{x y}=(n-1)^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) . \\
& r_{x y}=\frac{s_{s y}}{s_{s} s_{y}}
\end{aligned}
$$

Sample statistics

Formulas as written in the course notes:

$$
\begin{aligned}
& \bar{x}=n^{-1} \sum_{i=1}^{n} x_{i}, \quad s_{x}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} /(n-1)}, \\
& \bar{y}=n^{-1} \sum_{i=1}^{n} y_{i}, \quad s_{y}=\sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} /(n-1)}
\end{aligned}
$$

$$
s_{x y}=(n-1)^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

$$
r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}
$$

$$
\begin{aligned}
& >x<-c(82,45,71,22,29,9,12,18,24) \\
& >y<-c(71,54,43,45,21,11,30,45,10) \\
& >\mathrm{n}<-9
\end{aligned}
$$

Formulas written in R code:

```
> xbar<-(1/n)*sum(x)
> xbar
[1] 34.66667
>
> sx<-sqrt( sum((x-xbar)^2)/(n-1) )
> sx
[1] 26.03843
>
> ybar<-(1/n)*sum(y)
> ybar
[1] 36.66667
> sy<-sqrt( sum((y-ybar)^2)/(n-1) )
> sy
[1] 20.36541
>
> sxy<-(1/(n-1))*sum((x-xbar)*(y-ybar))
> sxy
[1] 371.625
```

$>r x y<-s x y /\left(s x^{*} s y\right)$
$>r x y$
[1] 0.7008045

The goal is to minimize $S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}$.

Least Squares Solution:

$$
\begin{aligned}
& \hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x} \\
& \hat{b}_{1}=r_{x y} s_{y} / s_{x}
\end{aligned}
$$

$$
\begin{aligned}
& y=0+1 x \\
& y=25+0.25 x \\
& y=30+0.5 x \\
& y=20+1 x \\
& y=17.7+0.55 x
\end{aligned}
$$

$S(b 0, b 1)=2933.5$
$S(b 0, b 1)=2251.5$
$S(b 0, b 1)=2725.0$
$S(b 0, b 1)=5712.0$
$S(b 0, b 1)=1688.4$

The goal is to minimize $S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}$.

Least Squares Solution:
$\hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x}$ $\hat{b}_{1}=r_{x y} s_{y} / s_{x}$

Least Squares Solution:

$$
\begin{aligned}
& \hat{b}_{1}=r_{x y} s_{y} / s_{x} \\
& \hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x}
\end{aligned}
$$

> b1_hat<-rxy*sy/sx
> b0_hat<-ybar-b1_hat*xbar
$>$
> b1_hat
[1] 0.5481195
> b0_hat
[1] 17.66519

Least Squares Solution:

$$
\begin{aligned}
& \hat{b}_{1}=r_{x y} s_{y} / s_{x} \\
& \hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x}
\end{aligned}
$$

> b1_hat<-rxy*sy/sx
> b0_hat<-ybar-b1_hat*xbar
$>$
> b1_hat
[1] 0.5481195
> b0_hat
[1] 17.66519

Predicted values:

$$
\hat{y}=\hat{b}_{0}+\hat{b}_{1} x
$$

Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

Results: \quad We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of $\$ 0.55$ (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have $\$ 39.6$ (95% P.I. $=[\$ 0.8, \$ 78.4]$).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.

Least Squares Solution:

$$
\begin{aligned}
& \hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x} \\
& \hat{b}_{1}=r_{x y} s_{y} / s_{x}
\end{aligned}
$$

Predicted values:

$$
\hat{y}=\hat{b}_{0}+\hat{b}_{1} x
$$

We predict that a 50 year old will have $\$ 45.1$, whereas a 40 year old will have $\$ 39.6$.

$$
\begin{aligned}
& 45.1=17.67+0.548 * 50 \\
& 39.6=17.67+0.548 * 40
\end{aligned}
$$

Least Squares Solution:

$$
\begin{aligned}
& \hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x} \\
& \hat{b}_{1}=r_{x y} s_{y} / s_{x}
\end{aligned}
$$

Predicted values:

$$
\hat{y}=\hat{b}_{0}+\hat{b}_{1} x
$$

> yhat<-b0_hat+b1_hat*x
> yhat
[1] 62.6109942 .3305756 .5816729 .7238233 .5606622 .5982724 .24263
[8] 27.5313430 .82006

> plot $(y \sim x, p c h=20, c e x=3, x \lim =c(0,100), y \lim =c(0,100))$
> abline(17.67, 0.548 , col="gold", lwd=6)

$$
\hat{b}_{0}=\bar{y}-\hat{b}_{1} \bar{x} \quad \hat{b}_{1}=r_{x y} s_{y} / s_{x}
$$

Predicted values:

$$
\hat{y}=\hat{b}_{0}+\hat{b}_{1} x
$$

> yhat<-b0_hat+b1_hat*x
> points(x,yhat, pch=20, cex=3, col="blue")

Residuals

$$
e_{i}=y_{i}-\hat{b}_{0}-\hat{b}_{1} x_{i}, \quad i=1, \ldots, n
$$

> residuals

8.389012$11.669432-13.581674$
$15.276180-12.560656-11.598267$
$\begin{array}{llll}{[7]} & 5.757375 & 17.468658 & -20.820059\end{array}$

Residuals

$$
e_{i}=y_{i}-\hat{b}_{0}-\hat{b}_{1} x_{i}, \quad i=1, \ldots, n
$$

The goal is to minimize $S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}$

We have:

$$
e_{i}=y_{i}-\hat{b}_{0}-\hat{b}_{1} x_{i}, \quad i=1, \ldots, n
$$

Therefore:

$$
\begin{aligned}
S\left(b_{0}, b_{1}\right) & =\sum_{i=1}^{n}\left(e_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}
\end{aligned}
$$

3.8 Residual Plots

3.8 Residual plots

In this section, residual plots are introduced to check if the model (3.36) is an adequate approximation to (3.33), and also to check the normality and homoscedasticity assumptions.
the residual

$$
e_{i}=y_{i}-\hat{b}_{0}-\hat{b}_{1} x_{i}, \quad i=1, \ldots, n .
$$

Residual plots include the following.
(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model (plot of residuals versus predicted values, plots of residuals versus each explanatory variable).
(ii) Check for normality (normal quantile plot of residuals) if the plots from (i) look OK.

3.8 Residual Plots

3.8 Residual plots

In this section, residual plots are introduced to check if the model (3.36) is an adequate approximation to (3.33), and also to check the normality and homoscedasticity assumptions.
the residual

$$
e_{i}=y_{i}-\hat{b}_{0}-\hat{b}_{1} x_{i}, \quad i=1, \ldots, n
$$

Residual plots include the following.
(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model (plot of residuals versus predicted values, plots of residuals versus each explanatory variable).
(ii) Check for normality (normal quantile plot of residuals) if the plots from (i) look OK.

Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and	
Methods:	We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.
Results:	We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of $\$ 0.55$ (95% C.I. $=[\$ 0.05, \$ 1.05]$).
Conclusions:	We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).
Small Print:	The analysis rests on the following assumptions: - the observations are independently and identically distributed. - Homoscedasticity of residuals or equal variance. - the response variable, money, is normally distributed.

- the relationship between response and predictor variables is linear.

3.8 Residual Plots

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model

Homoscedasticity:

Heteroscedasticity:

EQUAL VARIANCE

NOT EQUAL VARIANCE

3.8 Residual Plots

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model

Homoscedasticity:

 Heteroscedasticity:
EQUAL VARIANCE

NOT EQUAL VARIANCE
(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model (plot of residuals versus predicted values, plots of residuals versus each explanatory variable).
(ii) Check for normality (normal quantile plot of residuals) if the plots from (i) look OK.

3.8 Residual Plots

Homoscedasticity of residuals or "equal variance"
(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value

3.8 Residual Plots

Homoscedasticity of

 residuals or "equal variance"(1) Plot of residuals versus predicted values:
plot(residuals~yhat, pch=20, cex=3, col="violet")

3.8 Residual Plots

Heteroscedasticity of residuals

 or "not equal variance"(1) Plot of residuals versus predicted values:
plot(residuals~yhat, pch=20, cex=3, col="violet")

3.8 Residual Plots

Homoscedasticity of

residuals or "equal variance"
(2) Plot of residuals versus explanatory value:
> plot(residuals~x, pch=20, cex=3, col="orange")

3.8 Residual Plots

Heteroscedasticity of residuals

 or "not equal variance"(2) Plot of residuals versus explanatory value:
> plot(residuals~x, pch=20, cex=3, col="orange")

3.8 Residual Plots

(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value

Residual plot (homoscedasticity)

Residual

(a)

Residual plot (heteroscedasticity)
Residual

(b)

3.8 Residual Plots

(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value

3.8 Residual Plots

Homoscedasticity of residuals or "equal variance"

3.8 Residual Plots

Heteroscedasticity of residuals or "not equal variance"

3.8 Residual Plots

The response variable is normally distributed.
(3) Normal quantile plot of residuals.

3.8 Residual Plots

The response variable is normally distributed.

(3) Normal quantile plot of residuals :

Normal Q-Q Plot

3.8 Residual Plots

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model (plot of residuals versus predicted values, plots of residuals versus each explanatory variable).(2)
(ii) Check for normality (normal quantile plot of residuals) if the plots from (i) look OK.

2.1.3 ... Residuals

Because the best fitting line goes through the middle of the scatter of points, some e_{i} are ≥ 0 and others are ≤ 0. It turns out there is some balance and

$$
\begin{align*}
\sum_{i=1}^{n} e_{i} & =0 \tag{2.29}\\
\bar{e}=n^{-1} \sum_{i=1}^{n} e_{i} & =0 \tag{2.30}
\end{align*}
$$

sum(residuals)
 [1] $1.332268 \mathrm{e}-14$
 (1/n)*sum(residuals)
 [1] $1.480297 \mathrm{e}-15$

Chapter 2

- Section 2.1 has the mathematics leading to the least squares line.
- Section 2.2 introduces the simple linear regression model (prediction with one explanatory variable) that is formulated for a predictive equation. This is needed to quantify the variability of the coefficients of the best-fitting line, when different samples are taken from the population.
- Section 2.5 has intervals for simple linear regression: the confidence interval for the slope of the least square line, confidence intervals for subpopulation means, and prediction intervals for a future or out-ofsample Y given x^{*}.
- Section 2.6 has an explanation of Student t quantiles used in the interval estimates.

Section 2.2 - Statistical linear regression model

1. For $i=1, \ldots, n,\left(x_{i}, y_{i}\right)$ is a realization of $\left(x_{i}, Y_{i}\right)$, where Y_{i} is a random variable and x_{i} is non-random.
2. The stochastic relationship is:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n \tag{2.32}
\end{equation*}
$$

where the ϵ_{i} 's are independent normal random variables with mean 0 and variance σ^{2}. Think of ϵ as the sum of unmeasured effects.
3. From properties of normal random variables, this implies that

$$
\begin{equation*}
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right) . \tag{2.33}
\end{equation*}
$$

Section 2.2 - Statistical linear regression model

1. For $i=1, \ldots, n,\left(x_{i}, y_{i}\right)$ is a realization of $\left(x_{i}, Y_{i}\right)$, where Y_{i} is random variable \& $\mathrm{d} x_{i}$ is non-random.
2. The stochastic relationship is:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n, \tag{2.32}
\end{equation*}
$$

where the ϵ_{i} 's are independent norms random variables ith mean 0 and variance σ^{2}. Think of ϵ as the sum of unmeasured effects.
3. From properties of norma random variables, his implies that

$$
\begin{equation*}
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right) . \tag{2.33}
\end{equation*}
$$

Section 2.2 - Statistical linear regression model

1. For $i=1, \ldots, n,\left(x_{i}, y_{i}\right)$ is a realization of $\left(x_{i}, Y_{i}\right)$, where Y_{i} is random variable ${ }^{\text {d }} x_{i}$ is non-random.
2. The stochastic relationship is:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n, \tag{2.32}
\end{equation*}
$$

where the ϵ_{i} 's are independent norms random variables ith mean 0 and variance σ^{2}. Think of ϵ as the sum of unmeasured effects.
3. From properties of norma random variables, his implies that

$$
\begin{equation*}
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right) . \tag{2.33}
\end{equation*}
$$

What is a random variable?

Section 2.2 - Statistical linear regression model

1. For $i=1, \ldots, n,\left(x_{i}, y_{i}\right)$ is a realization of $\left(x_{i}, Y_{i}\right)$, where Y_{i} is random variable \& $\mathrm{d} x_{i}$ is non-random.
2. The stochastic relationship is:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n, \tag{2.32}
\end{equation*}
$$

where the ϵ_{i} 's are independent norms random variables ith mean 0 and variance σ^{2}. Think of ϵ as the sum of unmeasured effects.
3. From properties of norma random variables, his implies that

$$
\begin{equation*}
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right) . \tag{2.33}
\end{equation*}
$$

What is a random variable?

A quantity for which it is impossible to know with 100% certainty it's value.

Section 2.2 - Statistical linear regression model

1. For $i=1, \ldots, n,\left(x_{i}, y_{i}\right)$ is a realization of $\left(x_{i}, Y_{i}\right)$, where Y_{i} is random variable a $\mathrm{d} x_{i}$ is non-random.
2. The stochastic relationship is:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n, \tag{2.32}
\end{equation*}
$$

where the ϵ_{i} 's are independent norme random variables ith mean 0 and variance σ^{2}. Think of ϵ as the sum of unmeasured effects.
3. From properties of norma random variables, his implies that

$$
\begin{equation*}
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right) \tag{2.33}
\end{equation*}
$$

What is a random variable?

"A random variable, Y , is a variable whose possible values are numerical outcomes of a random phenomenon."

Section 2.2 - Statistical linear regression model

Three Examples of a Random Variable

"A random variable, Y , is a variable whose possible values are numerical outcomes of a random phenomenon."

Example 1: Y is the unknown result of a rolling a die (1, 2, 3, 4, 5 or 6)

Example 2: Y is the unknown result of a coin flip ("heads" or "tails")

Example 3: Y is the unknown amount of money that a random person walking on the street has in their bank account.

Section 2.2 - Statistical linear regression model

"A random variable, Y , is a variable whose possible values are numerical outcomes of a random phenomenon."

Example 1: Y is the unknown result of rolling a die (1, 2, 3, 4, 5 or 6)

Y is a random variable. All we can know about Y is that:

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{Y}=1)=1 / 6 \\
& \operatorname{Pr}(\mathrm{Y}=2)=1 / 6 \\
& \operatorname{Pr}(\mathrm{Y}=3)=1 / 6 \\
& \operatorname{Pr}(\mathrm{Y}=4)=1 / 6 \\
& \operatorname{Pr}(\mathrm{Y}=5)=1 / 6 \\
& \operatorname{Pr}(\mathrm{Y}=6)=1 / 6
\end{aligned}
$$

Section 2.2 - Statistical linear regression model

"A random variable, Y , is a variable whose possible values are numerical outcomes of a random phenomenon."

Example 2: Y is the unknown result of a coin flip ("heads" or "tails")
Once we observe the result of the coin flip we have " y ".
" y " is not random variable it is a "realization of a random variable" also known as "data".
Y is a random variable that follows a Bernoulli(θ) distribution:

$Y \sim \operatorname{Bern}(\theta)$

where θ is a population parameter. For a "fair coin", $\theta=0.5$

Section 2.2 - Statistical linear regression model

"A random variable, Y , is a variable whose possible values are numerical outcomes of a random phenomenon."

Example 3: Y is the unknown amount of money that a random person has in their bank account.
Y is a random variable that may depend on the age (X) of the random person.

Let us assume that this dependence is linear such that:

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon \quad \text { and } \quad \varepsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

where β_{0}, β_{1}, and σ^{2} are population parameters.

Section 2.2 - Statistical linear regression model

Y is a random variable that may depend on X.

We assume that this dependence is linear such that:

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon \quad \text { and } \quad \varepsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

where β_{0}, β_{1}, and σ^{2} are population parameters.

1. For $i=1, \ldots, n,\left(x_{i}, y_{i}\right)$ is a realization of $\left(x_{i}, Y_{i}\right)$, where Y_{i} is a random variable and x_{i} is non-random.
2. The stochastic relationship is:

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n, \tag{2.32}
\end{equation*}
$$

where the ϵ_{i} 's are independent normal random variables with mean 0 and variance σ^{2}. Think of ϵ as the sum of unmeasured effects.
3. From properties of normal random variables, this implies that

$$
\begin{equation*}
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right) \tag{2.33}
\end{equation*}
$$

Section 2.2 - Statistical linear regression model

Y is a random variable that may depend on X .
We assume that this dependence is linear such that:

$$
Y=\beta_{0}+\beta_{1} X+\varepsilon \quad \text { and } \quad \varepsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right)
$$

where β_{0}, β_{1}, and σ^{2} are population parameters.
ε is not a parameter. ε is a "random variable".
We have n random variables. For $i=1, \ldots, \mathrm{n}$:
$Y_{i} \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} X_{i}, \sigma^{2}\right)$

Section 2.2 - Statistical linear regression model

3. From properties of normal random variables, this implies that
(2.33) $\quad Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)$.

Conventional notation for probability/statistics

- Y (upper case letter) is a random variable;
- y (lower case letter) is a realization of a random variable;
- boldfaced $\mathbf{Y}=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right)$ is a random vector and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$ is a vector of realized values;

Section 2.2 - Statistical linear regression model

3. From properties of normal random variables, this implies that

$$
\begin{equation*}
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right) \tag{2.33}
\end{equation*}
$$

Conventional notation for probability/statistics

- Y (upper case letter) is a random variable;
- y (lower case letter) is a realization of a random variable;
- boldfaced $\mathbf{Y}=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right)$ is a random vector and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$ is a vector of realized values;
- inside $\mathrm{E}(\cdot)$ and $\operatorname{Var}(\cdot)$, the arguments are random variables and they should be shown in upper case;

Section 2.2 - Statistical linear regression model

3. From properties of normal random variables, this implies that

$$
\begin{equation*}
Y_{i} \sim N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right) \tag{2.33}
\end{equation*}
$$

Conventional notation for probability/statistics

- Y (upper case letter) is a random variable;
- y (lower case letter) is a realization of a random variable;
- boldfaced $\mathbf{Y}=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right)$ is a random vector and $\mathbf{y}=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right)$ is a vector of realized values;
- inside $\mathrm{E}(\cdot)$ and $\operatorname{Var}(\cdot)$, the arguments are random variables and they should be shown in upper case;
- Greek letters are used for parameters such as β_{1}, σ, μ (an exception is the use of ϵ for the random deviation from the line or curve);
- caret or hat on a symbol is used for estimators, for example $\hat{\mu}, \hat{\sigma}$ (read as mu hat or sigma hat).

Section 2.2 - Statistical linear regression model

What is a random variable?

"A random variable, Y , is a variable whose possible values are numerical outcomes of a random phenomenon."

For a Random Variable, Y, we typically want to talk about the Expectation and Variance:

Example 1: $\quad E[Y]=3.5 \quad \operatorname{Var}(Y)=2.92$

Example 2: $\quad E[Y]=0.5 \quad \operatorname{Var}(Y)=0.25$

Example 3: $E[Y]=\beta_{0}+\beta_{1} X \quad \operatorname{Var}(Y)=\sigma^{2}$

Section 2.2 - Statistical linear regression model

Example 1: All we can know about Y is that:

$$
\begin{array}{lll}
\operatorname{Pr}(\mathrm{Y}=1)=1 / 6 & \operatorname{Pr}(\mathrm{Y}=2)=1 / 6 & \operatorname{Pr}(\mathrm{Y}=3)=1 / 6 \\
\operatorname{Pr}(\mathrm{Y}=4)=1 / 6 & \operatorname{Pr}(\mathrm{Y}=5)=1 / 6 & \operatorname{Pr}(\mathrm{Y}=6)=1 / 6
\end{array}
$$

> Y<-sample(c(1,2,3,4,5,6), size=1,prob=c(1/6,1/6,1/6,1/6,1/6,1/6))

Using the definitions of Expectation and Variance we can calculate:
$E[Y]=3.5 \quad \operatorname{Var}(Y)=2.92$
or:
> mean(sample(c(1,2,3,4,5,6), size=10000000, prob=c(1/6,1/6,1/6,1/6,1/6,1/6), replace=TRUE) [1] 3.500276

Section 2.2 - Statistical linear regression model

Example 2: All we can know about Y is that:

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{Y}=0)=1-\theta \\
& \operatorname{Pr}(\mathrm{Y}=1)=\theta
\end{aligned}
$$

$>$ theta<-0.5
$>\mathrm{Y}<-$ sample $(c(0,1), 1, \operatorname{prob}=c(1-$ theta, theta $))$
Using the definitions of Expectation and Variance we can calculate:
$\mathrm{E}[\mathrm{Y}]=\theta \quad \operatorname{Var}[\mathrm{Y}]=\theta(1-\theta)$
or:
> mean(sample(c(0,1), 100000, prob=c(1-theta, theta), replace=TRUE))
[1] 0.50282

Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of X :

Let $X=20$.
$Y=\beta_{0}+\beta_{1} 20+\varepsilon \quad$ and $\quad \varepsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$

Therefore: $Y \sim$ Normal $\left(\beta_{0}+\beta_{1} 20, \sigma^{2}\right)$

Using properties of the Normal distribution:
$E[Y]=\beta_{0}+\beta_{1} 20 \quad \operatorname{Var}(Y)=\sigma^{2}$
> beta0<-20
> beta1<-0.5
$>\mathrm{X}<-20$
> sigma2<-100
$>Y<-r n o r m(n=1$, mean=beta0+beta1*X, sd=sqrt(sigma2))

Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of X :

$Y \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} 20, \sigma^{2}\right)$
> beta0<-20
> beta1<-0.5
> X<-20
> sigma2<-100
> Y<-rnorm(n=1, mean=beta0+beta1*X, sd=sqrt(sigma2))

Let's take a large sample of Y and look at the distribution with a histrogram:
Y<-rnorm(n=10000000, mean=beta0+beta1*X, sd=sqrt(sigma2)) hist(Y)

Section 2.2 - Statistical linear regression model

 Example 3 for a fixed value of $X=20$:$Y \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} 20, \sigma^{2}\right) \quad$ Histogram of Y

Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of $X=40$:
$X=40, Y \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} 40, \sigma^{2}\right)$
$>X<-40$
> Y<-rnorm(n=10000000, mean=beta0+beta1*X, sd=sqrt(sigma2))
> hist(Y)

Histogram of Y

Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of $X=60$:

$X=60, Y \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} 60, \sigma^{2}\right)$
$>X<-60$
> Y<-rnorm(n=10000000, mean=beta0+beta1*X, sd=sqrt(sigma2)) hist(Y)

Histogram of Y

Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of $X=80$:
$X=80, Y \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} 80, \sigma^{2}\right)$
$>X<-80$
> Y<-rnorm(n=10000000, mean=beta0+beta1*X, sd=sqrt(sigma2)) $>$ hist(Y)

Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of $X=80$:
$X=80, Y \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} 80, \sigma^{2}\right)$
$>X<-80$
> Y<-rnorm(n=10000000, mean=beta0+beta1*X, sd=sqrt(sigma2))
$>$ hist(Y)

Histogram of \mathbf{Y}

Section 2.2 - Statistical linear regression model

3.8 Residual Plots

Homoscedasticity of residuals or "equal variance"

3.8 Residual Plots

Homoscedasticity of residuals or "equal variance"

3.8 Residual Plots

Heteroscedasticity of residuals or "not equal variance"

3.8 Residual Plots

Heteroscedasticity of residuals or "not equal variance"

Questions?

