Stat 306:

Finding Relationships in Data.

Lecture 3
Residuals and 2.2 Statistical linear regression model
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Sample statistics

> x <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
>y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10)
>n<-9

Formulas as written in the course notes: Formulas written in R code:

> Xbar<-(1/n)*sum(x)
> Xxbar
[1] 34.66667
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> SX
[1] 26.03843
n >
-9)?/(n-1). > ybar<-(1/n)*sum(y)

i=1 > ybar
[1] 36.66667
>
Szy =(n—1)" ! Z —Z)(yi —v). > z§<-sqrt( sum(Cy-ybar)A2)/(n-1) )
[1] 20.36541

8 >
72ry T Saly > sxy<-(1/(n-1))*sum((x-xbar)*(y-ybar))
> SXY
[1] 371.625

> rxy<-sxy/(sx*sy)
> rxy
[1] 0.7008045
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n n >
. ‘J (xi__j)2/'01__1), > sx<-sgrt( sum((x-xbar)A2)/(n-1) )




The goal is to minimize S(bg, b;) = Z?zl(yz’ — by — byz;)?.

Least Squares Solution:

bo =T — 01T

>

b1 = TzySy/ Sz

y=0+ 1x
y =25+ 0.25x
y =30 + 0.5x

S(b0,b1) = 2933.5
S(b0,b1) = 2251.5
S(b0,b1) = 2725.0



The goal is to minimize S(bg,b1) = >
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1=1
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Least Squares Solution:
bo =y —biT

b1 = TzySy/5z




Least Squares Solution: -
bl_hat<-rxy*sy/sx

b@_hat<-ybar-bl_hat*xbar

>

7 >

b1 = TzySy/ Sz g
> bl_hat

l; B [1] 0.5481195
— U — T > b@_hat

0 =9~ [1] 17.66519



Least Squares Solution:

by = TzySy/ Sz
bo =Y — biZ

Predicted values:

> bl_hat<-rxy*sy/sx
> b@_hat<-ybar-bl_hat*xbar
>

> bl_hat

[1] 0.5481195

> b@_hat

[1] 17.66519
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Sample statistics

Age vs. Money

Objective: The purpose of this observational study was to b, = 17.7
: . b, = 0.55
demonstrate if, and to what extent, age is 1 _
associated with money. SRz : 354;
Design and -
Methods: We collected a random sample of individuals and for each .
determined their age (recorded in years) and the amount For parameter B, :
of money (in dollars) in their accounts. Analysis of 95% C.I. = [0.05, 1.05]
the data was done using linear regression. p—value = 0.036
Results: We obtained a random sample of n = 9 subjects. Thereis a

statistically significant association between age and money (p-value =0.036).

For every additional year in age, an individual’s amount of money increases
on average by an estimated of $0.55 (95% C.I. = [$0.05, $1.05]).

Conclusions:  We found that, as hypothesized, age is associated with money.
In our sample age accounted for about half of the variability

observed in money (R2=0.49). We predict that a 50 year old will
have $45.1 (95% P.l. = [$5.6, $84.5]), whereas a 40 year
old will have $39.6 (95% P.l. = [$0.8, $78.4]).

Small Print: The analysis rests on the following assumptions:

the observations are independently and identically distributed.

the response variable, money, is normally distributed.
Homoscedasticity of residuals or equal variance.

the relationship between response and predictor variables is linear.



Least Squares Solution:
bo =7 — 1T

b1 = T2ySy/ Sz

Predicted values:
Y = b() —I— blm

We predict that a 50 year old will have $45.1, whereas a 40 year old will have $39.6.

45.1=17.67 + 0.548*50
39.6 =17.67 + 0.548*40



Least Squares Solution:
bo =7 — by T
b1 = TzySy/ Sz

Predicted values:
A P P
Y = b() + b1£B

> yhat<-b@_hat+bl_hat*x
> yhat

[1] 62.61099 42.33057 56.58167 29.72382 33.56066 22.59827 24.24263
[8] 27.53134 30.820006
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> plot(y~x, pch=20, cex=3, xlim=c(9,100), ylim=c(9@,100))
> abline(l7.67, 0.548 , col="gold", lwd=06)

Bo =Y — Blf 81 — Ta:ysy/sa:
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Predicted values:
A Fal N
y = by + b1

> yhat<-b@_hat+bl_hat*x
> points(x,yhat, pch=20, cex=3, col="blue")
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Residuals

cizy.i—b()—blw,;, z'=1,...,n.

> residuals
[1] 8.389012 11.669432 -13.581674 15.276180 -12.560656 -11.598267
[7J 5.757375 17.468658 -20.820059



Residuals

6i=yi—bo—b1$i, z'=1,...,n.

The goal is to minimize S(bo,b1) = 5 ., (yi — bo — b1z;)?

i=1

We have: ei =Y —bo—bizy, t=1,...,n.

Therefore: S(bOabl) =Z?=1( i )2

= > i1 (yi — bo — biz;)?



3.8 Residual Plots

3.8 Residual plots

In this section, residual plots are introduced to check if the model (3.36) is an adequate approximation to

(3.33), and also to check the normality and homoscedasticity assumptions.

the residual
€; =y¢—50—81xi, 1 = 1,...,n.

Residual plots include the following.

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model

(plot of residuals versus predicted values, plots of residuals versus each explanatory variable).

(ii) Check for normality (normal quantile plot of residuals) if the plots from (i) look OK.



3.8 Residual Plots

3.8 Residual plots

In this section, residual plots are introduced to check if the model (3.36) is an adequate approximation to
(3.33), and also to check the normality and homoscedasticity assumptions.

the residual
e; =yi—50—81xi, r=1,...,n.

Residual plots include the following.

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model

(plot of residuals versus predicted values, plots of residuals versus each explanatory variable).

(1) (2)
(ii) Check for normality (normal quantile plot of residuals) if the plots from (i) look OK.

(3)




Objective:

Design and
Methods:

Results:

Conclusions:

Small Print:

Age vs. Money

The purpose of this observational study was to
demonstrate if, and to what extent, age is
associated with money.

We collected a random sample of individuals and for each
determined their age (recorded in years) and the amount
of money (in dollars) in their accounts. Analysis of

the data was done using linear regression.

We obtained a random sample of n = 9 subjects. Thereis a

statistically significant association between age and money (p-value =0.036).
For every additional year in age, an individual’s amount of money increases
on average by an estimated of $0.55 (95% C.I. = [$0.05, $1.05]).

We found that, as hypothesized, age is associated with money.
In our sample age accounted for about half of the variability
observed in money (R?=0.49). We predict that a 50 year old will
have $45.1 (95% P.I. = [$5.6, $84.5]), whereas a 40 year

old will have $39.6 (95% P.I. = [S0.8, $78.4]).

The analysis rests on the following assumptions:
- the observations are independently and identically distributed.

Homoscedasticity of residuals or equal variance.

the response variable, money, is normally distributed.
the relationship between response and predictor variables is linear.



3.8 Residual Plots

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model

Homoscedasticity: EQUAL VARIANCE

Heteroscedasticity: NOT EQUAL VARIANCE



3.8 Residual Plots

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model

Homoscedasticity: EQUAL VARIANCE

Heteroscedasticity: NOT EQUAL VARIANCE

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model

(plot of residuals versus predicted values, plots of residuals versus each explanatory variable).

(1) (2)

(ii) Check for normality (normal quantile plot of residuals) if the plots from (i) look OK.

(3)




3.8 Residual Plots

Homoscedasticity of
residuals or “equal variance”

(1) Plot of residuals versus predicted values.

(2) Plot of residuals versus explanatory value



3.8 Residual Plots =~ Homoscedasticity of
residuals or “equal variance’

4

(1) Plot of residuals versus predicted values:

plot(residuals~yhat, pch=20, cex=3, col="violet")
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3.8 Residual Plots Heteroscedasticity of residuals
or “not equal variance”

(1) Plot of residuals versus predicted values:

plot(residuals~yhat, pch=20, cex=3, col="violet")

residuals
0
|

30 40 50 60

yhat



3.8 Residual Plots =~ Homoscedasticity of
residuals or “equal variance’

4

(2) Plot of residuals versus explanatory value:
> plot(residuals~x, pch=20, cex=3, col="orange")
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3.8 Residual Plots Heteroscedasticity of residuals
or “not equal variance”

(2) Plot of residuals versus explanatory value:
> plot(residuals~x, pch=20, cex=3, col="orange")

residuals

-10

20 40 60 80



3.8 Residual Plots

(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value

Residual plot (homoscedasticity)
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3.8 Residual Plots

(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value
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3.8 Residual Plots

Homoscedasticity of residuals or “equal variance”

60 80 100
I I

40
|
[

®

100




3.8 Residual Plots

Heteroscedasticity of residuals or “not equal variance”
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3.8 Residual Plots

The response variable
is normally distributed.

(3) Normal quantile plot of residuals.



3.8 Residual Plots The response variable
is normally distributed.

(3) Normal quantile plot of residuals :
Normal Q-Q Plot
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3.8 Residual Plots

(i) Check for homoscedasticity versus heteroscedasticity and possible structural deviations from model

(plot of residuals versus predicted values, plots of residuals versus each explanatory variable).

(1) (2)

(ii) Check for normality (normal quantile plot of residuals) if the plots from (i) look OK.

(3)

now back to Chapter 2....



2.1.3 ... Residuals

Because the best fitting line goes through the middle of the scatter of points, some e; are > 0 and others are

< (. It turns out there is some balance and

(2.29) Y e =0,
i=1

(2.30) e=n"'Y e = 0
i=1

> sum(residuals)
[1] 1.332268e-14
> (1/n)*sum(residuals)
[1] 1.480297e-15



Chapter 2

Section 2.1 has the mathematics leading to the least squares line.

Section 2.2 introduces the simple linear regression model (prediction
with one explanatory variable) that is formulated for a predictive
equation. This is needed to quantify the variability of the coefficients
of the best-fitting line, when different samples are taken from the
population.

Section 2.5 has intervals for simple linear regression: the confidence

interval for the slope of the least square line, confidence intervals for
subpopulation means, and prediction intervals for a future or out-of-
sample Y given x*.

Section 2.6 has an explanation of Student t quantiles used in the
interval estimates.



J.

Section 2.2 - Statistical linear regression model

. Fori=1,...,n, (x;,y) is a realization of (z,,Y;), where Y, is a random variable and z, is non-random.

. The stochastic relationship is:

(232) )’. - ;"n + ‘3|J.‘, +€, t=1.....n,

where the ¢;'s are independent normal random variables with mean 0 and variance o. Think of ¢ as

the sum of unmeasured effects.

From properties of normal random variables, this implies that

(2.33) Y, ~ N(By + Byzi, o).



Section 2.2 - Statistical linear regression model

1. Fori=1,...,n, (x;,y) is a realization of (z,,Y;), where Y, is(l x; is non-random.

2. The stochastic relationship is:

(232) Y=8s+ Bz +¢€, i=1,...,n,

where the ¢,'s are independent normith mean 0 and variance o?. Think of ¢ as

the sum of unmeasured effects.

3. From properties of norms his implies that

(2.33) Y.~ N(By+ Bz, 02).




Section 2.2 - Statistical linear regression model

1. Fori=1,...,n, (x;,) is a realization of (z,,Y;), where Y, isd x; is non-random.

2. The stochastic relationship is:

(232) Y. — A"l) + 3|.‘l‘, +€, 1=1,..., n,

where the ¢,'s are independent uormith mean 0 and variance o*. Think of ¢ as

the sum of unmeasured effects.

3. From properties of norm# random variables, Jhis implies that

(2.33) Y, ~ N(By + Byzi, o).

What is a random variable?



Section 2.2 - Statistical linear regression model

1. Fori=1,...,n, (x;,y:) is a realization of (z,,Y;), where Y, isd z; is non-random.

2. The stochastic relationship is:

(232) Y, — AV’I: + 31.1', +€, 1=1,..., n,

where the ¢,'s are independent norm-m, mean 0 and variance 2. Think of ¢ as

the sum of unmeasured effects.

3. From properties of nurmhis implies that

(2.33) Y, ~ N(Bo + Bizi, 0°).

What is a random variable?

A quantity for which it is impossible to know with 100% certainty it’s value.



Section 2.2 - Statistical linear regression model

1. Fori=1,...,n, (x;,, ) is a realization of (z,,Y;), where Y, isd Z; is non-random.

2. The stochastic relationship is:

(232) )/. "Ii 4 31.1', €, ! l,.... T,

where the ¢;’s are independent “(m“'ith mean 0 and variance o*. Think of ¢ as

the sum of unmeasured effects.

3. From properties of nurmhis implies that

(2.33) Y, ~ N(By + Biz;, 0°).

What is a random variable?

“A random variable, Y, is a variable whose possible values
are numerical outcomes of a random phenomenon.”



Section 2.2 - Statistical linear regression model

Three Examples of a Random Variable

“A random variable, Y, is a variable whose possible values are numerical
outcomes of a random phenomenon.”

Example 1: Y is the unknown result of a rolling a die (1, 2, 3, 4, 5 or 6) Y

Example 2: Y is the unknown result of a coin flip (“heads” or “tails”) %ﬁ;

Example 3: Y is the unknown amount of money that a random person walking
on the street has in their bank account.




Section 2.2 - Statistical linear regression model

“A random variable, Y, is a variable whose possible values are
numerical outcomes of a random phenomenon.”

Example 1: Y is the unknown result of rolling a die (1, 2, 3, 4, 5 or 6)

Y is a random variable. All we can know about Y is that:

Pr(Y=1) =1/6

Pr(Y=2) = 1/6 -
Pr(Y=3) = 1/6 P
Pr(Y=4) = 1/6 g
Pr(Y=5) = 1/6

Pr(Y=6) =1/6



Section 2.2 - Statistical linear regression model

“A random variable, Y, is a variable whose possible values
are numerical outcomes of a random phenomenon.”

Example 2: Y is the unknown result of a coin flip (“heads” or “tails”)

a. .

Once we observe the result of the coin flip we have “y”.
“y” is not random variable it is a “realization of a random variable” also known as “data”.

Y is a random variable that follows a Bernoulli( 6 ) distribution:

Y ~Bern( 6 ) o

where 0 is a population parameter.
For a “fair coin”, 8=0.5




Section 2.2 - Statistical linear regression model

“A random variable, Y, is a variable whose possible values
are numerical outcomes of a random phenomenon.”

Example 3: Y is the unknown amount of money that a random person
has in their bank account.

Y is a random variable that may depend on the
age (X) of the random person.

Let us assume that this dependence is linear such that:

Y=B,+BX+¢€ and €~ Normal (0, 0?)

where B, , B;, and o? are population parameters.



Section 2.2 - Statistical linear regression model

Y is a random variable that may depend on X.

We assume that this dependence is linear such that:

Y=B,+BX+¢€ and &~Normal (0, o?)
where B, , B;, and 0% are population parameters.

Fori=1,...,n, (x;,y)is a realization of (z,, Y, ), where Y, is a random variable and z, is non-random.

2. The stochastic relationship is:

(2.32) Y= 804+ Bz +¢, 1=1,...,n,

where the ¢,'s are independent normal random variables with mean 0 and variance o*. Think of ¢ as

the sum of unmeasured effects.

3. From properties of normal random variables, this implies that

(2.33)  Yi~ N(Bo+ Bizi, 0°).




Section 2.2 - Statistical linear regression model

Y is a random variable that may depend on X.

We assume that this dependence is linear such that:

Y=B,+BX+¢€ and &~Normal (0, o?)
where B, , B;, and 0% are population parameters.
€ is not a parameter. € is a “random variable”.

We have n random variables. Fori=1, ..., n:

Y. ~ Normal (B, + BX;, 02)



Section 2.2 - Statistical linear regression model

3. From properties of normal random variables, this implies that

(2.33)  Y; ~ N(Bo + Pz, 02).

Conventional notation for probability/statistics

e Y (upper case letter) is a random variable;

e y (lower case letter) is a realization of a random variable;

Y, Y1

Y, Y2
e boldfaced Y = | . | is a random vector and y = | . | is a vector of realized values;

Y, Yn




Section 2.2 - Statistical linear regression model

3. From properties of normal random variables, this implies that

(2.33)  Y; ~ N(Bo + Pz, 02).

Conventional notation for probability/statistics

e Y (upper case letter) is a random variable;

o y (lower case letter) is a realization of a random variable;

Y Y1
Yo | Y2 | _

e boldfaced Y = | . | is a random vector and y = | . | is a vector of realized values;
},n yn

e inside E (-) and Var (+), the arguments are random variables and they should be shown in upper
case;




Section 2.2 - Statistical linear regression model

3. From properties of normal random variables, this implies that

(2.33)  Y; ~ N(Bo + Pz, 02).

Conventional notation for probability/statistics

e Y (upper case letter) is a random variable;

o y (lower case letter) is a realization of a random variable;

Y1 Y1
Yo | Y2 | _
e boldfaced Y = | . | is a random vector and y = | . | is a vector of realized values;
},n yn
e inside E (-) and Var (+), the arguments are random variables and they should be shown in upper

case;

e Greek letters are used for parameters such as 3, o, i (an exception is the use of € for the random
deviation from the line or curve);

e caret or hat on a symbol is used for estimators, for example fi,6 (read as mu hat or sigma hat).




Section 2.2 - Statistical linear regression model

What is a random variable?

“A random variable, Y, is a variable whose possible values
are numerical outcomes of a random phenomenon.”

For a Random Variable, Y, we typically want to talk about
the Expectation and Variance:

Example 1: E[Y]=3.5 Var(Y) =2.92
Example 2: E[Y]=0.5 Var(Y) =0.25

Example 3: E[Y] =B, + B,X Var(Y) = o2

Questions?



Section 2.2 - Statistical linear regression model

Example 1: All we can know about Y is that:
Pr(Y=1)=1/6 Pr(¥Y=2)=1/6 Pr(Y=3)=1/6 s
Pr(Y=4)=1/6 Pr(Y=5)=1/6 Pr(Y=6)=1/6

[
[ AN 4
e’
(Y 4

{; Y<-sample(c(1,2,3,4,5,6), size=1,prob=c(1/6,1/6,1/6,1/6,1/6,1/6))

Using the definitions of Expectation and Variance we can

calculate:
E[Y] =3.5 Var(Y) =2.92
or:

> mean(sample(c(1,2,3,4,5,6), size=10000000,prob=c(1/6,1/6,1/6,1/6,1/6,1/6), replace=TRUE)
[1] 3.500276

> var(sample(c(1,2,3,4,5,6), size=10000000,prob=c(1/6,1/6,1/6,1/6,1/6,1/6), replace=TRUE))
[1] 2.918512

> -



Section 2.2 - Statistical linear regression model
((

4

Example 2: All we can know about Y is that: )

Pr(Y=0) = 1-0
Pr(Y=1) = 8

> theta<-0.5
> Y<-sample(c(@,1), 1, prob=c(1l-theta, theta))

Using the definitions of Expectation and Variance we can
calculate:

E[Y] =6 Var[Y] = 6 (1-6)

or:
> mean(sample(c(0,1), 100000, prob=c(1-theta,
theta),replace=TRUE))
[1] 0.50282



Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of X:

Let X=20.

Y=B,+B,20+¢ and &€~ Normal (0, 0?)
Therefore: Y ~ Normal (B, + B,20, 02)
Using properties of the Normal distribution:

E[Y] =B, + B,20 Var(Y) = o

betad<-20

betal<-0.5

X<-20

sigmal<-100

IY<—r'norm(n=1, mean=beta@+betal*X, sd=sqrt(sigmal))



Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of X:

Y ~Normal (B, + 8,20, 0?)

betad<-20
betal<-0.5
X<-20
sigma2<-100
y<—rnorm(n=1, mean=beta@+betal*X, sd=sqrt(sigmal))

VVYV VY

Let’s take a large sample of Y and look at the distribution with a histrogram:

Y<-rnorm(n=10000000, mean=beta@+betal*X, sd=sqrt(sigma2))
Pist(Y)



Frequency

Section 2.2 - Statistical linear regression model
Example 3 for a fixed value of X=20:

Histogram of Y

Y ~Normal (B, + 8,20, 0?)

1500000
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Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of X=40:

X=40,Y~Normal (B, + B,40, o2

> X<-40
> Y<-rnorm(n=10000000, mean=beta@+betal*X, sd= sqrt(51gma2))
> hist(Y)

Histogram of Y
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Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of X=60:

X=60,Y~Normal (B, +B,60, 0?)

> X<-600
> Y<-rnorm(n=10000000, mean=beta@+betal*X, sd=sqrt(sigma))

> hist(Y)

Histogram of Y
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Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of X=80:

X=80,Y~Normal (B, +B,80, 0?)

X<-80
Y<-rnorm(n=10000000, mean=beta@+betal*X,
Pist(Y)

Histogram of Y

sd=sqrt(sigmal))
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Section 2.2 - Statistical linear regression model

Example 3 for a fixed value of X=80:

X=80,Y~Normal (B, +B,80, 0?)
X<-80

Y<-rnorm(n=10000000, mean=beta@+betal*X, sd=sqrt(sigmal))

Pist(Y)

Histogram of Y
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probability density
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Probability density

Section 2.2 - Statistical linear regression model

Response vanable ™~ __— Explanatory variable



Probability density

Section 2.2 - Statistical linear regression model
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Probability density

Section 2.2 - Statistical linear regression model
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Probability density

Section 2.2 - Statistical linear regression model

. 20 Explanatory variable
0 X



3.8 Residual Plots

Homoscedasticity of residuals or “equal variance”
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3.8 Residual Plots

Homoscedasticity of residuals or “equal variance”
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3.8 Residual Plots

Heteroscedasticity of residuals or “not equal variance”
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3.8 Residual Plots

Heteroscedasticity of residuals or “not equal variance”
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Questions?



