Stat 306: Finding Relationships in Data. Lecture 24 Review of Regression

Stat 306: Finding Relationships in Data.

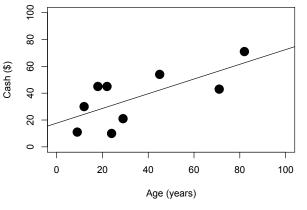
The main topic of this course is **regression**, which means fitting prediction equations.

Regression is a common statistical method in scientific research.

LINEAR REGRESSION

LOGISTIC REGRESSION

POISSON REGRESSION



 $Y_i \sim Normal(\mu(X_i), \sigma^2)$,

where: $\mu(X_i) = X_i \beta$

Minimize Least Squares

A one unit increase in x is associated with a β increase in Y.

 $\mathsf{Var}(\boldsymbol{\beta}) = \sigma^2 (X^T X)^{-1}$

Using properties of Normal Distribution:

 $se(\hat{\mu}_Y(x)) = \hat{\sigma} \times \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{(n-1)s_x^2}}.$ > lm(y~x)



 $Y_i \sim Bernoulli(\pi(X_i))$,

where:
$$\pi(X_i) = rac{exp(X_ieta)}{1+exp(X_ieta)}$$

Maximum Likelihood

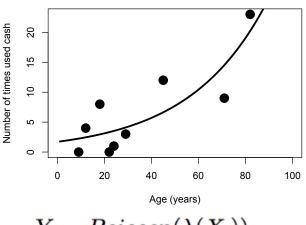
A one unit increase in x is associated with a β increase in the log odds Y.

$$\mathsf{Var}(\beta) = \left[\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \pi_{i}(1-\pi_{i})\right]^{-1}$$

Using delta method:

$$se(\hat{\pi}_Y(x)) =$$

> glm(y~x, family="binomial")



 $Y_i \sim Poisson(\lambda(X_i))$,

where: $\lambda(X_i) = exp(X_i\beta)$

Maximum Likelihood

A one unit increase in x is associated with increasing Y by a factor of a e^{β} .

$$\mathsf{Var}(\beta) = \left[\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \exp(\mathbf{x}_{i}^{T} \beta)\right]^{-1}$$

Using delta method:

$$se(\hat{\lambda}_Y(x)) =$$

> glm(y~x, family="poisson")

Simple Linear Regression

Three important things to know about a normal random variable

Linear combinations of independent normal random variables also have normal distributions! Remember...

 $\operatorname{Var}(aX \pm bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) \pm 2ab \operatorname{Cov}(X, Y)$

Thing 2:

A normal random variable can be converted to a standard normal random variable.

Thing 3:

If the variance is unknown, we must use the t distribution.

The Sum of Squared Residuals:

The goal is to minimize $S(b_0, b_1) = \sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2$.

 \boldsymbol{n}

(2.18)
$$\hat{b}_0 = \overline{y} - \hat{b}_1 \overline{x},$$

(2.19)
$$0 = \sum_{i=1}^{n} x_i y_i - [\overline{y} - \hat{b}_1 \overline{x}] n \overline{x} - \hat{b}_1 \sum_{i=1}^{n} x_i^2,$$

(2.20)
$$0 = \sum_{i=1}^{n} x_i y_i - n \overline{xy} + n \hat{b}_1 \overline{x}^2 - \hat{b}_1 \sum_{i=1}^{n} x_i^2,$$

 $\hat{b}_1 = rac{\sum_{i=1}^n x_i y_i - n \overline{xy}}{\sum_{i=1}^n x_i^2 - n \overline{x}^2}$

(2.22)
$$= \frac{(n-1)s_{xy}}{(n-1)s_x^2}$$

(2.23)
$$= \frac{r_{xy}s_xs_y}{s_x^2} = \frac{r_{xy}s_y}{s_x}.$$

The solution is therefore:

$$\hat{b}_0 = \overline{y} - \hat{b}_1 \overline{x}$$

$$\hat{b}_1 = r_{xy} s_y / s_x$$

Step 0: From θ , definestimator, $\hat{\theta}$	he Step 1: Consider the statistic, $\hat{\theta}$ random va	ne sample D , as a _ E	$[\hat{\Theta}]$ (to confirm it's unbiased) $[\hat{\Theta}]$ (to calculate se)	Step 3: Define se($\hat{\theta}$) = estimate of $$	C (Step 4: Define $1-\alpha)$ % C.I. = $\hat{\theta} \pm c \times se(\hat{\theta})$
Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β ₀	b ₀	B ₀	E[B ₀]	Var[B ₀]	se(b ₀)	C.I. for β_0
β1	b ₁	B ₁	E[B ₁]	Var[B ₁]	se(b ₁)	C.I. for β_1
σ ²	S ²	S ²	E[S ²]	Var[S ²]	se(s²)	C.I. for σ^2
$\mu_Y(x)$	$(\hat{\mu}_Y(x))$	$(\hat{\mu}_Y(x))$	$E(\hat{\mu}_Y(x))$	$\operatorname{Var}(\hat{\mu}_Y(x))$	$se(\hat{\mu}_Y(x))$	C.I. for $\mu_Y(x)$

Steps to get 95% C.I. for b₁

- 1. Consider the sample statistic b_1 as the random variable B_1
- 2. Determine $Var[B_1]$
- 3. Define $se(b_1)$ as an estimate of $sqrt(Var(B_1))$

4. 95% C.I. =
$$[b_1 - c^*se(b_1), b_1 + c^*se(b_1)]$$

2.5.2 Derivations

The standard errors come from the variances when the estimators are considered as random variables. $\hat{\beta}_1$ as a random variable \hat{B}_1 is:

(2.50)
$$\hat{B}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}) Y_i}{(n-1)s_x^2} = \sum_{i=1}^n a_i Y_i,$$

where

(2.51)
$$a_i = (x_i - \overline{x}) / [(n-1)s_x^2].$$

$$b_{1} = r_{xy} \frac{s_{y}}{s_{x}}$$
$$= \frac{\sum_{i=1}^{n} (y_{i})(x_{i} - \bar{x})}{(n-1)s_{x}^{2}}$$

$$=\sum_{i=1}^{n} \frac{(x_i - \bar{x})}{(n-1)s_x^2}(y_i)$$

Step 1. Consider the sample statistic b_1 as the random variable B_1 :

$$B_1 = \sum_{i=1}^n \frac{(x_i - \bar{x})}{(n-1)s_x^2} (Y_i)$$

$$=\sum_{i=1}^n a_i Y_i$$
 , where: $a_i = rac{(x_i - ar{x})}{(n-1)s_x^2}$

Step 1. Consider the sample statistic b_1 as the random variable B_1 :

$$egin{aligned} B_1 &= \sum_{i=1}^n rac{(x_i - ar{x})}{(n-1)s_x^2}(Y_i) \ &= \sum_{i=1}^n a_i Y_i & ext{, where:} & a_i = rac{(x_i - ar{x})}{(n-1)s_x^2} \end{aligned}$$

Step 2. Determine Var[B₁]

First, recall that for random variable Y_i , we have:

(2.33)
$$Y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2).$$

(2.58)
$$\operatorname{Var}(\hat{B}_{1}) = \sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}(Y_{i}) = \sigma^{2} \sum_{i=1}^{n} a_{i}^{2} = \sigma^{2} \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})^{2}}{[(n-1)s_{x}^{2}]^{2}}$$
$$= \frac{\sigma^{2}}{(n-1)s_{x}^{2}}.$$

Steps to get 95% C.I. for b₁

- 1. Consider the sample statistic b_1 as the random variable B_1
- 2. Determine Var[B₁] = $\frac{\sigma^2}{(n-1)s_x^2}$.
- 3. Define $se(b_1)$ as an estimate of $sqrt(Var(B_1))$
- 4. 95% C.I. = $[b_1 c^*se(b_1), b_1 + c^*se(b_1)]$

Steps to get 95% C.I. for b₁

- 1. Consider the sample statistic b_1 as the random variable B_1
- 2. Determine Var[B₁] = $\frac{\sigma^2}{(n-1)s_x^2}$.
- 3. Define se(b₁) as an estimate of sqrt(Var(B₁))

$$se(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{n-1} s_x}$$

where:
$$\hat{\sigma} = \text{residual SD} = \left\{ (n-2)^{-1} \sum_{i=1}^{n} e_i^2 \right\}^{1/2}$$

Steps to get 95% C.I. for b₁

- 1. Consider the sample statistic b_1 as the random variable B_1
- 2. Determine Var[B₁] = $\frac{\sigma^2}{(n-1)s_-^2}$.
- 3. Define se(b₁) as an estimate of sqrt(Var(B₁)) : $se(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{n-1}s_r}$

4. 95% C.I. = $[b_1 - c^*se(b_1), b_1 + c^*se(b_1)]$

Steps to get 95% C.I. for b₁

- 1. Consider the sample statistic b_1 as the random variable B_1
- 2. Determine Var[B₁] = $\frac{\sigma^2}{(n-1)s_-^2}$.
- 3. Define se(b₁) as an estimate of sqrt(Var(B₁)) : $se(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{n-1}s_m}$

4. 95% C.I. = $[b_1 - c^*se(b_1), b_1 + c^*se(b_1)]$

we take $c = t_{n-2,0.975}$

Steps to get 95% C.I. for b₁

- 1. Consider the sample statistic b_1 as the random variable B_1
- 2. Determine Var[B₁] = $\frac{\sigma^2}{(n-1)s_x^2}$.
- 3. Define se(b₁) as an estimate of sqrt(Var(B₁)) : $se(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{n-1}s_{\sigma}}$

4. 95% C.I. = [b₁ - c*se(b₁) , b₁ + c*se(b₁)]

we take
$$c = t_{n-2,0.975}$$

Then we have :

95% C.I. for
$$\beta_1$$
: $[b_1 - t_{n-2,0.975} \frac{\hat{\sigma}}{\sqrt{n-1}s_x}, b_1 + t_{n-2,0.975} \frac{\hat{\sigma}}{\sqrt{n-1}s_x}]$

Steps to get 95% C.I. for b₁

- 1. Consider the sample statistic b_1 as the random variable B_1
- 2. Determine Var[B₁] = $\frac{\sigma^2}{(n-1)s_x^2}$.
- 3. Define se(b₁) as an estimate of sqrt(Var(B₁)) : $se(\hat{\beta}_1) = \frac{1}{\sqrt{m}}$

$$\frac{1}{\sqrt{n-1}s_x}$$

 $\hat{\sigma}$

4. 95% C.I. = [b₁ - c*se(b₁) , b₁ + c*se(b₁)]

we take
$$c = t_{n-2,0.975}$$

Then we have :

95% C.I. for
$$eta_1: \ [b_1 - t_{n-2,0.975} rac{\hat{\sigma}}{\sqrt{n-1}s_x}, \quad b_1 + t_{n-2,0.975} rac{\hat{\sigma}}{\sqrt{n-1}s_x}]$$

where:
$$\hat{\sigma} = \text{residual SD} = \left\{ (n-2)^{-1} \sum_{i=1}^{n} e_i^2 \right\}^{1/2}$$
 (also known as "s"

Step 0: From θ , definestimator, $\hat{\theta}$	he Step 1: Consider the statistic, $\hat{\theta}$ random va	ne sample D , as a _ E	$[\hat{\Theta}]$ (to confirm it's unbiased) $[\hat{\Theta}]$ (to calculate se)	Step 3: Define se($\hat{\theta}$) = estimate of $$	C (Step 4: Define $1-\alpha)$ % C.I. = $\hat{\theta} \pm c \times se(\hat{\theta})$
Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β ₀	b ₀	B ₀	E[B ₀]	Var[B ₀]	se(b ₀)	C.I. for β_0
β1	b ₁	B ₁	E[B ₁]	Var[B ₁]	se(b ₁)	C.I. for β_1
σ ²	S ²	S ²	E[S ²]	Var[S ²]	se(s²)	C.I. for σ^2
$\mu_Y(x)$	$(\hat{\mu}_Y(x))$	$(\hat{\mu}_Y(x))$	$E(\hat{\mu}_Y(x))$	$\operatorname{Var}(\hat{\mu}_Y(x))$	$se(\hat{\mu}_Y(x))$	C.I. for $\mu_Y(x)$

se(subpopulation mean) VS. se(prediction error)

Subpopulation mean:

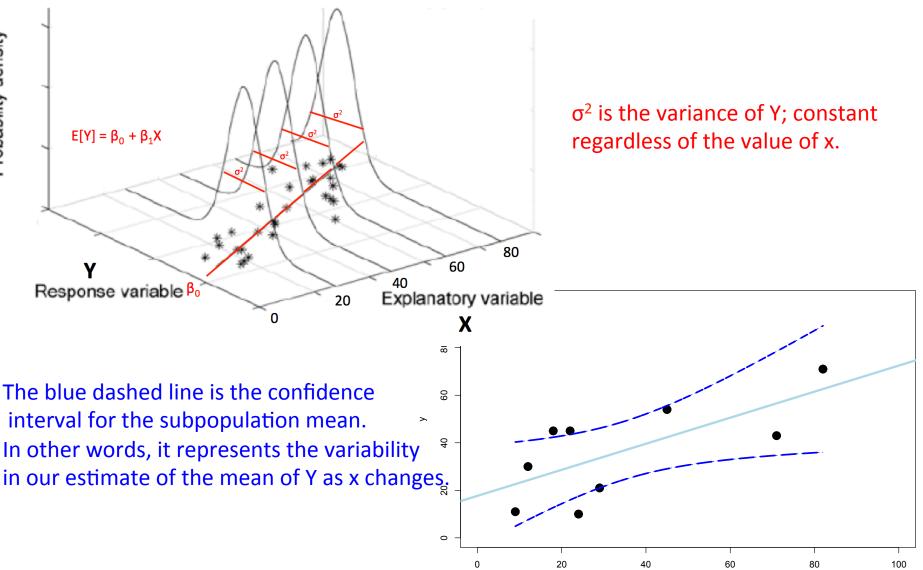
$$se(\hat{\mu}_Y(x)) = \hat{\sigma} \times \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{(n-1)s_x^2}}$$

Whereas, the (estimated) SE of the prediction error is:

(2.69)
$$\hat{\sigma} \times \sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{(n-1)s_x^2}},$$

and this does not decrease to 0 as $n \to \infty$.

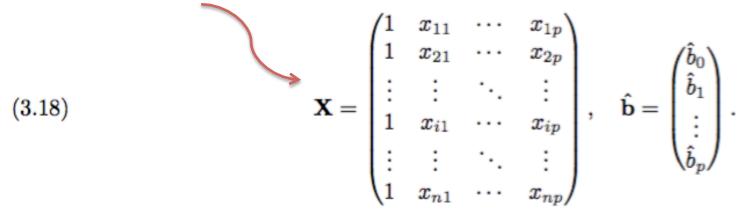
 Confused about homogeneity vs. non-consistent width of confidence intervals?



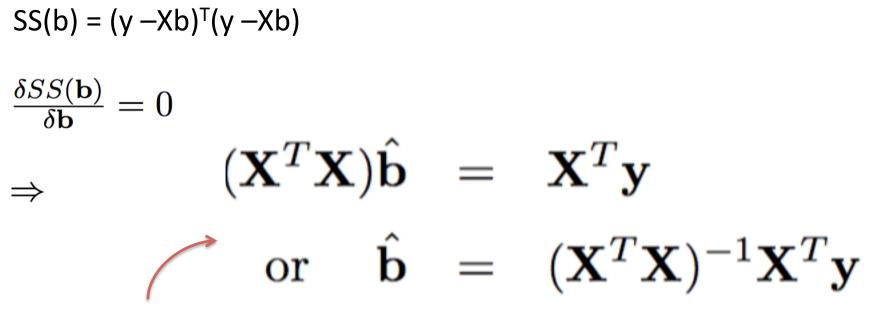
х

Probability density

Multiple Linear Regression



Least Squares for multiple Regression:



The system of normal equations

Step 0: From θ, defi estimator, $\hat{\theta}$		Step 1: Consider tl statistic, $\hat{\theta}$ random va	, as a	De E[ep 2: etermine $\hat{\Theta}$] (to confirm it's un $ar[\hat{\Theta}]$ (to calculate		Step 3: Define $se(\hat{\theta}) =$ estimate of $\sqrt{2}$	D (1	tep 4: efine $(-\alpha)$ % C.I. = $f \pm c \times se(\hat{\theta})$
Population parameter or "something we would like to estimate"	Samp statis ("est		Estimator a Random Variable		Expected Value of the estimator	ne	Variance of the estimator	Standard Error of estimator	Confidence Interval
β	\mathbf{b} = (\mathbf{X}^2)	1.	B ~ N(β, σ^2 (X ^T X)	2.) ⁻¹)	E[b] = β	3.	Var[B] 4 . = $\sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$	se(b) 5. = $\hat{\sigma} \sqrt{[(\mathbf{X}^T \mathbf{X})^{-1}]_{jj}}$	C.I. for β 6.
σ^2	s ² or	MS(Res) 1.	S ²	2.	E[S ²]	3.	Var[S ²]	se(s ²)	C.I. for σ^2
$\mu_{Y}(\mathbf{x})$	$(\hat{\mu}_Y)$	(x)) 1.	$(\hat{\mu}_Y(x))$	2.	$E(\hat{\mu}_Y(x))$	3.	$\operatorname{Var}(\hat{\mu}_Y(x))$ 4.	$se(\hat{\mu}_Y(x))$ 5.	C.I. for $\mu_Y(x)$ 6.

(3.66)

$$\hat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} = \mathbf{A} \mathbf{Y},$$
(3.67)

$$\hat{\mathbf{A}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = \begin{pmatrix} \mathbf{a}_0^T \\ \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_p^T \end{pmatrix},$$
(3.68)

$$(k \times n) \qquad (k \times k) \quad (k \times n)$$

- Thing 1:
 - Linear combinations of independent normal random variables also have normal distributions! (see Appendix B)

where \mathbf{a}_j^T is a $1 \times n$ row vector. The covariance matrix of \mathbf{Y} is $\mathbf{\Sigma}_{\mathbf{Y}} = \sigma^2 \mathbf{I}_n$ ($n \times n$ identity matrix because the ϵ_i are independent and identically distributed $N(0, \sigma^2)$ random variables). From the Appendix A for linear combinations,

(3.69)
$$\operatorname{Var}(\hat{B}_1) = \operatorname{Var}(\mathbf{a}_1^T \mathbf{Y}) = \mathbf{a}_1^T \mathbf{\Sigma}_{\mathbf{Y}} \mathbf{a}_1 = \mathbf{a}_1^T (\sigma^2 \mathbf{I}_n) \mathbf{a}_1 = \sigma^2 \mathbf{a}_1^T \mathbf{a}_1$$

(3.70)
$$\operatorname{Var}(\hat{B}_2) = \operatorname{Var}(\mathbf{a}_2^T \mathbf{Y}) = \mathbf{a}_2^T \mathbf{\Sigma}_{\mathbf{Y}} \mathbf{a}_2 = \sigma^2 \mathbf{a}_2^T \mathbf{a}_2$$

: = :

(3.71)
$$\operatorname{Var}(\hat{B}_p) = \operatorname{Var}(\mathbf{a}_p^T \mathbf{Y}) = \mathbf{a}_p^T \mathbf{\Sigma}_{\mathbf{Y}} \mathbf{a}_p = \sigma^2 \mathbf{a}_p^T \mathbf{a}_p$$

(3.72)
$$\operatorname{Cov}(\hat{B}_{1},\hat{B}_{2}) = \operatorname{Cov}(\mathbf{a}_{1}^{T}\mathbf{Y},\mathbf{a}_{2}^{T}\mathbf{Y}) = \mathbf{a}_{1}^{T}\boldsymbol{\Sigma}_{\mathbf{Y}}\mathbf{a}_{2} = \sigma^{2}\mathbf{a}_{1}^{T}\mathbf{a}_{2}$$
$$\vdots = \vdots$$

Var(B) = Var(AY)
Var (B) = A Var(Y)
$$A^{T}$$

https://en.wikipedia.org/wiki/ Covariance_matrix#Generalization_of_the_variance

(3.66)

$$\hat{\mathbf{B}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} = \mathbf{A} \mathbf{Y},$$
(3.67)

$$\hat{\mathbf{A}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T = \begin{pmatrix} \mathbf{a}_0^T \\ \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_p^T \end{pmatrix},$$
(3.68)

$$(k \times n) \qquad (k \times k) \quad (k \times n)$$

$$\begin{aligned} \mathbf{Y} &\sim Normal(\mu, \sigma^2 I_n) \\ \begin{bmatrix} y_1 \\ y_2 \\ \ddots \\ y_n \end{bmatrix} &\sim Normal \begin{bmatrix} \mu_1 & \sigma^2 & 0 \dots & 0 \\ \mu_2 & , & 0 & \sigma^2 \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \mu_n & 0 & \dots & \sigma^2 \end{bmatrix} \end{aligned}$$

$$(3.66) \qquad \hat{\mathbf{B}} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{Y} = \mathbf{A}\mathbf{Y},$$

$$(3.67) \qquad \mathbf{A} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T} = \begin{pmatrix} \mathbf{a}_{0}^{T} \\ \mathbf{a}_{1}^{T} \\ \vdots \\ \mathbf{a}_{p}^{T} \end{pmatrix},$$

$$(3.68) \qquad (k \times n) \qquad (k \times k) \quad (k \times n)$$
Variance – Covariance Matrix of $\mathbf{Y} \qquad \text{Var}(\mathbf{B}) = \text{Var}(\mathbf{A}\mathbf{Y})$

$$\mathbf{Y} \sim Normal(\mu, \sigma^{2}I_{n}) \qquad \text{Var}(\mathbf{B}) = \mathbf{A} \text{Var}(\mathbf{Y}) \mathbf{A}^{T}$$

$$\begin{bmatrix} y_{1} \\ y_{2} \\ \cdot \\ y_{n} \end{bmatrix} \sim Normal \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{n} \end{bmatrix}, \qquad (\sigma^{2} \quad 0 \dots \quad 0) \\ (\sigma^{2} \quad 0 \dots \quad 0) \\$$

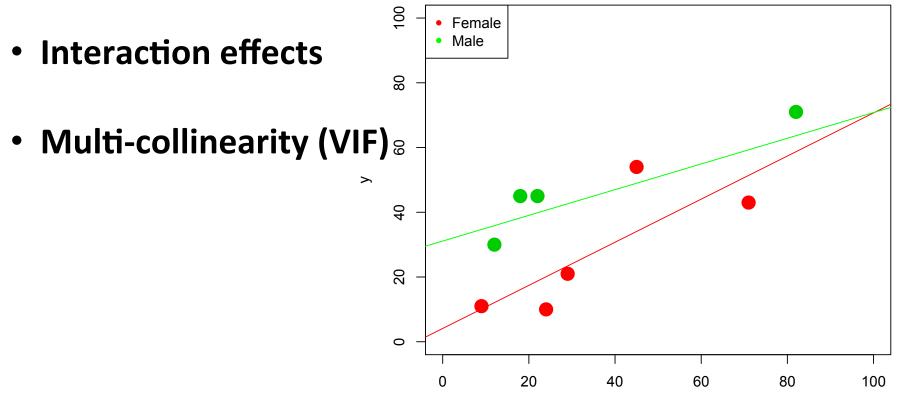
Putting everything together, one gets:

$$(3.73) \begin{pmatrix} \operatorname{Var}(\hat{B}_{0}) & \operatorname{Cov}(\hat{B}_{0}, \hat{B}_{1}) & \cdots & \operatorname{Cov}(\hat{B}_{0}, \hat{B}_{p}) \\ \operatorname{Cov}(\hat{B}_{1}, \hat{B}_{0}) & \operatorname{Var}(\hat{B}_{1}) & \cdots & \operatorname{Cov}(\hat{B}_{1}, \hat{B}_{p}) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(\hat{B}_{p}, \hat{B}_{0}) & \operatorname{Cov}(\hat{B}_{p}, \hat{B}_{1}) & \cdots & \operatorname{Var}(\hat{B}_{p}) \end{pmatrix} = \sigma^{2} \begin{pmatrix} \mathbf{a}_{1}^{T} \mathbf{a}_{0} & \mathbf{a}_{1}^{T} \mathbf{a}_{1} & \cdots & \mathbf{a}_{1}^{T} \mathbf{a}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{p}^{T} \mathbf{a}_{0} & \mathbf{a}_{p}^{T} \mathbf{a}_{1} & \cdots & \mathbf{a}_{p}^{T} \mathbf{a}_{p} \end{pmatrix} \\ (3.74) \\ (3.75) \\ (3.76) & = \sigma^{2} \begin{pmatrix} \mathbf{a}_{0}^{T} \\ \mathbf{a}_{1}^{T} \\ \cdots \\ \mathbf{a}_{p}^{T} \end{pmatrix} (\mathbf{a}_{0} & \cdots & \mathbf{a}_{p}) = \sigma^{2} \mathbf{A} \mathbf{A}^{T} \\ = \sigma^{2} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} \\ = \sigma^{2} (\mathbf{X}^{T} \mathbf{X})^{-1} \stackrel{\text{def}}{=} \boldsymbol{\Sigma}_{\hat{\boldsymbol{\beta}}}. \end{cases}$$

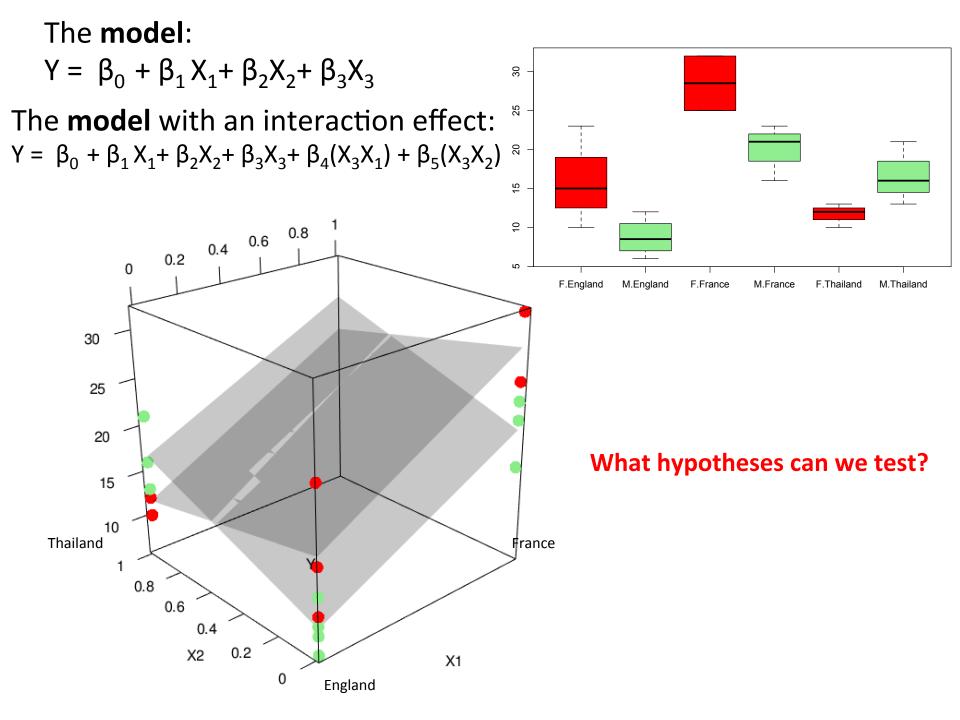
Var(
$$\beta$$
) = $\sigma^2(X^TX)^{-1}$

Multiple Linear Regression

Categorical covariates



age (years)



The art of linear regression

- Categorical predictors
- Quadratic (polynomial) relationships
- Outliers (Leverage, Influence)
- How to fix heterogeneity
- Regression to the mean
- Simpsons Paradox
- Unobserved Confounding

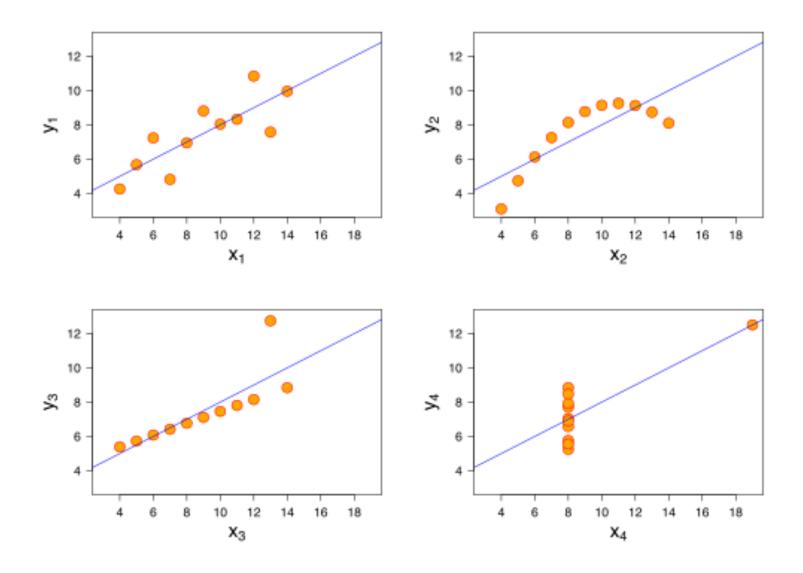
Four categories of scientific study

	Observational	Experimental
Goal is Explanation	1.	2.
Goal is Prediction	3.	4.

Goal is **Explanation**

- 1. What questions do you want to ask?
- 2. Define an appropriate model.
- 3. Define the hypotheses that correspond to the questions of interest.
- 4. Collect the data.
- 5. Fit the model as defined earlier.
- 6. Answer your questions with uncertainty quantification (i.e. with p-values, Confidence Intervals).

Classic example: Anscombe's quartet



Goal is Prediction

- 1. What do you want to predict?
- 2. Define an appropriate metric for evaluating quality of predictions (e.g. RMSE, absolute prediction error, ROC curve).
- 3. Collect the data.
- 4. Separate your data into "train" and "holdout" subsets.
- 5. Fit many different models to the "train" subset of the data.
- 6. Pick the model that is "best" (according to your chosen outcome) for making predictions on the "holdout" subset of the data.
- 7. Note that p-values and Confidence intervals are not valid.

For each model, we do 5-fold CV:

Metric:

Absolute

Mean

Prediction **Error:** Feld 5 Fold 1 Feld 2 Fold 3 Fold 4 • € Test Training Training Training Training Test 12 Prediction Statistics → Complete → Training Training Training Training Test Test 8 Data -> → 6 Training Training Training Training Test Test • € 9 Training Training Test Training Training Test) → 5 Training Training Training Test Training Test

K-averaged metric = 40/5 = 8

Source: http://blog.goldenhelix.com/goldenadmin/cross-validation-for-genomic-prediction-in-svs/

Logistic Regression

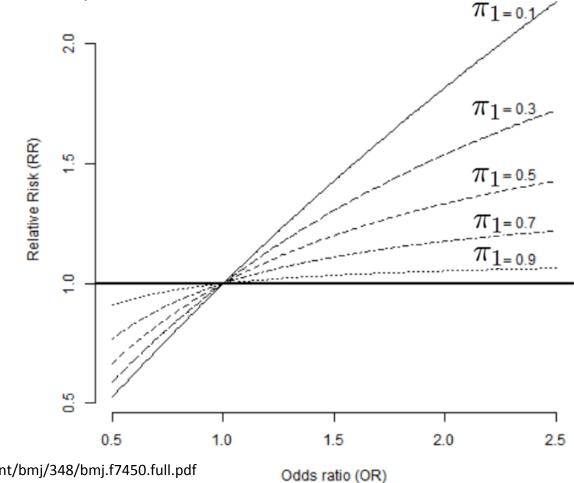
- Maybe there are better measure to describe the effect?
- Since OR is so difficult to interpret, perhaps we should use RR?

Type $ heta$	Expression	Domain	Null Value 0	
Risk difference (RD)	$\pi_1 - \pi_2$	[-1, 1]		
Relative risk (RR)	π_1/π_2	$(0,\infty)$	1	
log RR	$\log(\pi_1) - \log\left(\pi_2\right)$	$(-\infty,\infty)$	0	
Odds ratio (OR)	$rac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}$	$(0,\infty)$	1	
log OR	$\log \frac{\pi_1}{1 - \pi_1} - \log \frac{\pi_2}{1 - \pi_2}$	$(-\infty,\infty)$	0	

Biostatistical Methods: The Assessment of Relative Risks By John M. Lachin To convert an Odds Ratio to a Relative Risk, you need to know π_1 , which in our example is Pr(Y=1|X=0). Here is the formula:

$$RR = OR/(1 - \pi_1 + (\pi_1 \cdot OR))$$

(Exercise : Derive the formula.)



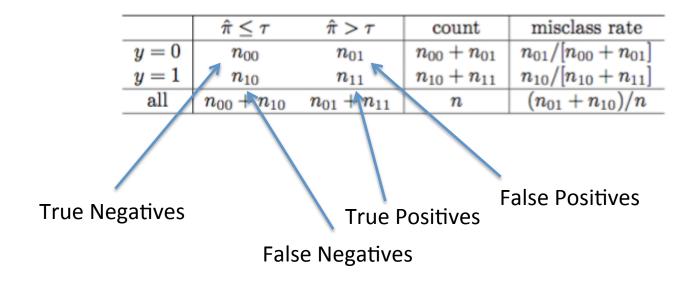
More info: http://www.bmj.com/content/bmj/348/bmj.f7450.full.pdf

Misclassification and the ROC curve

Note that: The misclassification rate among the true 0s is $n_{01}/[n_{00} + n_{01}]$ and this decreases as τ increases. The misclassification rate among the true 1s is $n_{10}/[n_{10} + n_{11}]$ and this increases as τ increases.

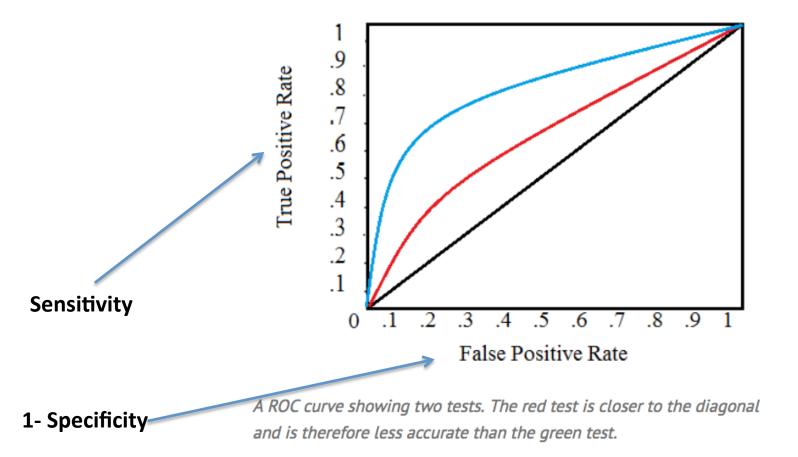
Sensitivity: True Positive rate (= n11/(n11+n10))

Specificity: True Negative rate (= n00/(n00 + n01))



The Receiver Operating Characteristic curve (ROC curve)

The ROC curve is a plot that show how **Sensitivity** and **Specificity** change with different values for the threshold:

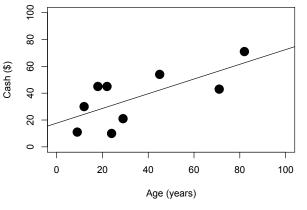


http://www.statisticshowto.com/receiver-operating-characteristic-roc-curve/

LINEAR REGRESSION

LOGISTIC REGRESSION

POISSON REGRESSION



 $Y_i \sim Normal(\mu(X_i), \sigma^2)$,

where: $\mu(X_i) = X_i \beta$

Minimize Least Squares

A one unit increase in x is associated with a β increase in Y.

 $\mathsf{Var}(\boldsymbol{\beta}) = \sigma^2 (X^T X)^{-1}$

Using properties of Normal Distribution:

 $se(\hat{\mu}_Y(x)) = \hat{\sigma} \times \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{(n-1)s_x^2}}.$ > lm(y~x)



 $Y_i \sim Bernoulli(\pi(X_i))$,

where:
$$\pi(X_i) = rac{exp(X_ieta)}{1+exp(X_ieta)}$$

Maximum Likelihood

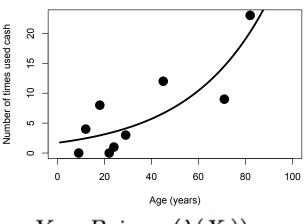
A one unit increase in x is associated with a β increase in the log odds Y.

$$\mathsf{Var}(\beta) = \left[\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \pi_{i}(1-\pi_{i})\right]^{-1}$$

Using delta method:

$$se(\hat{\pi}_Y(x)) =$$

> glm(y~x, family="binomial")



 $Y_i \sim Poisson(\lambda(X_i))$,

where: $\lambda(X_i) = exp(X_i\beta)$

Maximum Likelihood

A one unit increase in x is associated with increasing Y by a factor of a e^{β} .

$$\mathsf{Var}(\beta) = \left[\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \exp(\mathbf{x}_{i}^{T} \beta)\right]^{-1}$$

Using delta method:

$$se(\hat{\lambda}_Y(x)) =$$

> glm(y~x, family="poisson")

What's next for regression...

- Other distributions for Y
 - Survival times or Time-to-event data
 - Semicontinuous data
 - Mixture models
- Penalized Regression
 - Lasso
 - Ridge Regression
- Observations are not independent
 - Random effects models
 - Methods for clustered data
 - Time series models or longitudinal models
 - Spatial models
- Bayesian Methods
 - Incorporating Prior knowledge about the parameters
 - Updating your likelihood (posterior distribution) as you collect more data.

"An approximate answer to the right problem is worth a good deal more than an exact answer to an approximate problem." -- John Tukey

"All models are wrong but some are useful". – George Box "Absence of evidence is not evidence of absence."

"The most important is to know what questions to ask of the data."