
Stat	306:		
Finding	Rela1onships	in	Data.	

Lecture	24	
Review	of	Regression	

	



The	main	topic	of	this	course	is	regression,		
which	means	fiEng	predic1on	equa1ons.		
	
Regression	is	a	common	sta1s1cal	method	in		
scien1fic	research.		
	

Stat	306:		
Finding	Rela1onships	in	Data.	
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LINEAR	REGRESSION 	 						LOGISTIC	REGRESSION 	 			POISSON	REGRESSION 		

A	one	unit	increase	in	x		
is	associated	with	a	β		
increase	in	Y.	

A	one	unit	increase	in	x		
is	associated	with	a	β		
increase	in	the	log	odds	Y.	

A	one	unit	increase	in	x		
is	associated	with	increasing	
Y	by	a	factor	of	a	eβ	.		

Minimize	Least	Squares	 Maximum	Likelihood	 Maximum	Likelihood	

Var(β)	=	[																		]-1	 Var(β)	=	[																		]-1	Var(β)	=	

Using	proper1es	of	Normal	Distribu1on:	
Using	delta	method:	 Using	delta	method:	



Simple	Linear	Regression	



Thing	1:	
Linear	combina1ons	of	independent	normal	
random	variables	also	have	normal	
distribu1ons!	Remember…	

Thing	2:	
A	normal	random	variable	can	be	converted	
to	a	standard	normal	random	variable.	

	

Thing	3:	
If	the	variance	is	unknown,	we	must	use	
the	t	distribu1on.	

	

Three	important	things	to	know	about	a	normal	random	variable	



The	solu;on	is	therefore:	

The	Sum	of	Squared	Residuals:	



Popula;on	
parameter		
or	“something	
we	would	like	to	
es;mate”	

Sample	
sta;s;c	
(“es;mator”)	

Es;mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es;mator	

Variance		
of	the	
es;mator	

Standard	
Error	of	
es;mator	

Confidence	
Interval	

β0	 b0	 B0	 E[B0]	 Var[B0]	
	

se(b0)	 C.I.	for	β0	

β1	 b1	 B1	 E[B1]	 Var[B1]	 se(b1)	 C.I.	for	β1	

σ2				
	

s2	 S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	
	

E	 Var	 C.I.	for	
	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



2.5.2	Deriva1ons	
Steps	to	get	95%	C.I.	for	b1	
1.  Consider	the	sample	sta1s1c	
								b1	as	the	random	variable	B1		
		
2.  Determine	Var[B1]	

3.  Define	se(b1)	as	an	es1mate	of	sqrt(Var(B1))		

4.  95%	C.I.	=		[	b1	-	c*se(b1)	,	b1	+	c*se(b1)	]	



2.5.2	Deriva1ons	

Step	1.	Consider	the	sample	sta1s1c		b1	as	the	
random	variable	B1	:	
	

,	where:	



2.5.2	Deriva1ons	
Step	1.	Consider	the	sample	sta1s1c		b1	as	the	
random	variable	B1	:	
	

,	where:	

Step	2.	Determine	Var[B1]	
	
First,	recall	that	for	random	variable	Yi	,	we	have:	
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2.5.2	Deriva1ons	
Steps	to	get	95%	C.I.	for	b1	
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where:		
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2.5.2	Deriva1ons	
Steps	to	get	95%	C.I.	for	b1	
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4.   95%	C.I.	=		[	b1	-	c*se(b1)	,	b1	+	c*se(b1)	]	

we	take	c	=	tn-2,0.975	



2.5.2	Deriva1ons	
Steps	to	get	95%	C.I.	for	b1	
1.  Consider	the	sample	sta1s1c	
								b1	as	the	random	variable	B1		
		
2.  Determine	Var[B1]	

3.  Define	se(b1)	as	an	es1mate	of	sqrt(Var(B1))	:		

4.   95%	C.I.	=		[	b1	-	c*se(b1)	,	b1	+	c*se(b1)	]	

we	take	c	=	tn-2,0.975	
Then	we	have	:		
	

	95%	C.I.		for	β1	:		
	



2.5.2	Deriva1ons	
Steps	to	get	95%	C.I.	for	b1	
1.  Consider	the	sample	sta1s1c	
								b1	as	the	random	variable	B1		
		
2.  Determine	Var[B1]	

3.  Define	se(b1)	as	an	es1mate	of	sqrt(Var(B1))	:		

4.   95%	C.I.	=		[	b1	-	c*se(b1)	,	b1	+	c*se(b1)	]	

we	take	c	=	tn-2,0.975	

where:		
(also	known	as	“s”)	

Then	we	have	:		
	

	95%	C.I.		for	β1	:		
	



Popula;on	
parameter		
or	“something	
we	would	like	to	
es;mate”	

Sample	
sta;s;c	
(“es;mator”)	

Es;mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es;mator	

Variance		
of	the	
es;mator	

Standard	
Error	of	
es;mator	

Confidence	
Interval	

β0	 b0	 B0	 E[B0]	 Var[B0]	
	

se(b0)	 C.I.	for	β0	
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Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



se(subpopula;on	mean)	VS.	se(predic;on	error)	

Subpopula1on	mean:	

Whereas	 is:	



•  Confused	about	homogeneity	vs.	non-consistent	
width	of	confidence	intervals?	
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σ2	is	the	variance	of	Y;	constant	
regardless	of	the	value	of	x.	

The	blue	dashed	line	is	the	confidence	
	interval	for	the	subpopula1on	mean.	
In	other	words,	it	represents	the	variability	
in	our	es1mate	of	the	mean	of	Y	as	x	changes.	



Mul1ple	Linear	Regression	



design	matrix	or	data	matrix		

The	system	of	normal	equa3ons	

SS(b)	=	(y	–Xb)T(y	–Xb)	
Least	Squares	for	mul;ple	Regression:	



Popula;on	
parameter		
or	“something	
we	would	like	to	
es;mate”	
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sta;s;c	
(“es;mator”)	

Es;mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
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Variance		
of	the	
es;mator	

Standard	
Error	of	
es;mator	

Confidence	
Interval	

β	 b	 B	~		
N(β,															)	

E[b]	=	β	 Var[B]	
	

se(b)	 C.I.	for	β	

σ2	 s2	or	MS(Res)	
	

S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	

							(x)	
	

E	 Var	 C.I.	for	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

3.6	Interval	es1mates	and	standard	
errors	

1.	 2.	 3.	 4.	 5.	 6.	

1.	 3.	2.	

1.	 2.	 3.	 4.	 5.	 6.	



3.6	Interval	es1mates	and	standard	
errors	



3.6	Interval	es1mates	and	standard	
errors	

hsps://en.wikipedia.org/wiki/
Covariance_matrix#Generaliza1on_of_the_variance	

Var(		B			)		=		Var(AY)	
Var	(B)						=	A	Var(Y)	AT	



3.6	Interval	es1mates	and	standard	
errors	



3.6	Interval	es1mates	and	standard	
errors	

Var(		B			)		=		Var(AY)	
Var	(B)						=	A	Var(Y)	AT	



3.6	Interval	es1mates	and	standard	
errors	

Variance	–	Covariance	Matrix	of	Y	 Var(		B			)		=		Var(AY)	
Var	(B)						=	A	Var(Y)	AT	



3.6	Interval	es1mates	and	standard	
errors	

Var(β)	=	
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•  Categorical	covariates	

•  Interac;on	effects	

•  Mul;-collinearity	(VIF)	

Mul1ple	Linear	Regression	



The	model:	
Y	=		β0		+	β1	X1+	β2X2+	β3X3	
	The	model	with	an	interac1on	effect:	

Y	=		β0		+	β1	X1+	β2X2+	β3X3+	β4(X3X1)	+	β5(X3X2)		
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What	hypotheses	can	we	test?	



•  Categorical	predictors	

•  Quadra1c	(polynomial)	rela1onships	
	
•  Outliers	(Leverage,	Influence)	

•  How	to	fix	heterogeneity	
	
•  Regression	to	the	mean	
	
•  Simpsons	Paradox	

•  Unobserved	Confounding	

The	art	of	linear	regression	



Observa;onal	 Experimental	

Goal	is	
Explana;on	 1.		 2.	

Goal	is	
Predic;on	 3.	 4.	

Four	categories	of	scien;fic	study	



Goal	is	
Explana;on	
	

1. What	ques1ons	do	you	want	to	ask	?	

2.  Define	an	appropriate	model.	

3.  Define	the	hypotheses	that	correspond	to	the	ques1ons	of	interest.	

4.  Collect	the	data.	

5.  Fit	the	model	as	defined	earlier.	

6.  Answer	your	ques1ons	with	uncertainty	quan1fica1on	
		(	i.e.	with	p-values,	Confidence	Intervals).	



Classic	example:		Anscombe's	quartet				



Goal	is	
Predic;on	
	

1. What	do	you	want	to	predict?	

2.  Define	an	appropriate	metric	for	evalua1ng	quality	of	predic1ons	
					(e.g.	RMSE,	absolute	predic1on	error,	ROC	curve).	

3.		Collect	the	data.	
	
4.  Separate	your	data	into	“train”	and	“holdout”	subsets.	
	
5.  Fit	many	different	models	to	the	“train”	subset	of	the	data.	

6.  Pick	the	model	that	is	“best”	(according	to	your	chosen	outcome)		
for	making	predic1ons	on	the	“holdout”	subset	of	the	data.	

7.  Note	that	p-values	and	Confidence	intervals	are	not	valid.	



Mean	
Absolute	
Predic;on	
Error:	

12	

8	

6	

9	

5	

For	each	model,	we	do	5-fold	CV:	

K-averaged	metric		=	40/5	=	8		

Metric:	

Source:	hsp://blog.goldenhelix.com/goldenadmin/cross-valida1on-for-genomic-predic1on-in-svs/	



Logis1c	Regression	



Biosta1s1cal	Methods:	The	Assessment	of	Rela1ve	Risks	
By	John	M.	Lachin	

•  Maybe	there	are	beser	measure	to	describe	the	effect?	

•  Since	OR	is	so	difficult	to	interpret,	perhaps	we	should	use	RR?	



To	convert	an	Odds	Ra1o	to	a	Rela1ve	Risk,	you	need	to	know											,	which	in	our	
example	is	Pr(Y=1|X=0).		Here	is	the	formula:	
	

(Exercise	:	Derive	the	formula.)	

More	info:	hsp://www.bmj.com/content/bmj/348/bmj.f7450.full.pdf	



Misclassifica1on	and	the	ROC	curve	

True	Nega1ves	

False	Nega1ves	

False	Posi1ves	
True	Posi1ves	

Note	that:	

Sensi;vity: 	True	Posi1ve	rate	(	=	n11/(n11+n10)	)	
	
Specificity: 	True	Nega1ve	rate	(	=	n00/(n00	+	n01)	)	



The	Receiver	Opera;ng	Characteris;c	curve		(ROC	curve)	

The	ROC	curve	is	a	plot	that	show	how	Sensi;vity	and	Specificity	change	with	different		
values	for	the	threshold:	

Sensi;vity	

1-	Specificity	

hsp://www.sta1s1cshowto.com/receiver-opera1ng-characteris1c-roc-curve/	
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LINEAR	REGRESSION 	 						LOGISTIC	REGRESSION 	 			POISSON	REGRESSION 		

A	one	unit	increase	in	x		
is	associated	with	a	β		
increase	in	Y.	

A	one	unit	increase	in	x		
is	associated	with	a	β		
increase	in	the	log	odds	Y.	

A	one	unit	increase	in	x		
is	associated	with	increasing	
Y	by	a	factor	of	a	eβ	.		

Minimize	Least	Squares	 Maximum	Likelihood	 Maximum	Likelihood	

Var(β)	=	[																		]-1	 Var(β)	=	[																		]-1	Var(β)	=	

Using	proper1es	of	Normal	Distribu1on:	
Using	delta	method:	 Using	delta	method:	



What’s	next	for	regression…	
•  Other	distribu1ons	for	Y		

–  Survival	1mes	or	Time-to-event	data	
–  Semicon1nuous	data	
–  Mixture	models	

•  Penalized	Regression	
–  Lasso	
–  Ridge	Regression	

	
•  Observa1ons	are	not	independent	

–  Random	effects	models	
–  Methods	for	clustered	data	
–  Time	series	models	or	longitudinal	models	
–  Spa1al	models	

•  Bayesian	Methods	
–  Incorpora1ng	Prior	knowledge	about	the	parameters	
–  Upda1ng	your	likelihood	(posterior	distribu1on)	as	you	collect	more	data.	



"An	approximate	answer	to	the	right	problem	is	
worth	a	good	deal	more	than	an	exact	answer	
to	an	approximate	problem."	--	John	Tukey	

"All	models	are	wrong	but	some	are	useful".	
–	George	Box	



“Absence	of	evidence	is	not	evidence	of	absence.”	

“The	most	important	is	to	know	what	
ques1ons	to	ask	of	the	data.”	


