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6.2	Count	Regression	

	



Counts!	

0, 1, 2, 3, 4, …





9, 10, 11,  12, ...





34, 35, 36 ....


a.k.a	Non-nega+ve	integers!	



Count	Regression	

Y,	the	outcome	variable,	is	a	count,	
		i.e.	a	non-nega1ve	integer.	

	
X	is	any	explanatory	covariate.	



We	want	to	model	the	mean,	λ	,	as	a	func1on	of	covariates	X:	

E[Y]	=	λ	
Var[Y]	=	λ	

Important	property	of	the	Poisson	distribu1on:	

Count	Regression	



E[Y]	=	λ	
Var[Y]	=	λ	

Important	property	of	the	Poisson	distribu1on:	

Homoscedas1city?	



Sec+on	2.2	-	Sta1s1cal	linear	regression	model		
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Maximum	Likelihood	Es1ma1on	

Steps	to	get	Maximum	Likelihood	Es+mates:	
	
1.  Define	the	Likelihood	as	func1on	of	the	parameters	given	the	data.	

2.  Define	the	log-Likelihood.	

3.  Maximize	the	log-Likelihood	or	minimize	the	nega1ve	log-Likelihood.	

For	Poisson	regression,	we	have:	

Unfortunately…	

and:	



Maximum	Likelihood	Es1ma1on	



Maximum	Likelihood	Es1ma1on	

Steps	to	get	standard	error	for	the	Maximum	Likelihood	Es+mates	
(MLE):	
	
1.  Take	the	second	deriva1ve	of	the	log-Likelihood	func1on.	This	is	the	

Hessian	Matrix.		The	nega1ve	of	the	Hessian	is	the	Fisher	informa1on	
matrix.	

2.  Evaluate	the	Fisher	Informa1on	matrix	at	the	MLE.		This	is	known	as	
the	“observed	Fisher	Informa1on	matrix”.	

3.  Take	the	inverse	of	the	“observed	Fisher	Informa1on	matrix”.		This	is	
your	es1mate	for	the	Variance-Covariance	matrix	of	your	parameter.		
The	diagonal	elements	are	the	es1mated	Variances.	

4.  Take	the	square	root	of	the	diagonal	elements	to	obtain	the	standard	
errors.	

	



Maximum	Likelihood	Es1ma1on	



Diagnos1cs	for	Poisson	regression:	The	Deviance.	



Diagnos1cs	for	Poisson	regression:	The	AIC	

3. 	Lower	AIC	suggests	that	the	model	is	beeer.	

1.  		The	AIC	seeks	to	iden1fy	“good	models”	by	considering	both	the	likelihood	and	the	
	number	of	parameters	in	the	model:	

2. 	As	such	it	is	similar	to	the	adjusted	R2.	



Interpreta1on	for	Poisson	regression:	



heps://freakonometrics.hypotheses.org/9593	
	

heps://freakonometrics.hypotheses.org/2289	

Excellent	informa+on	on	Poisson	Regression:	



Popula+on	
parameter		
or	“something	
we	would	like	to	
es+mate”	

Log-
likelihood	

MLE	 The	nega+ve		
Hessian	

Variance		
of	the	
es+mator	

Standard	
Error	of	
es+mator	

Confidence	
Interval	

β	 Numerical	
methods	

H	 Var[B]	
=	(H)-1	

se(b)	=	 C.I.	for	β	

Delta	method?	
hep://www.indiana.edu/~jslsoc/stata/ci_computa1ons/spost_deltaci.pdf	

Step	0:	
For	θ,	define	
the	log-likelihood.		

Step	1:	
Maximize	the	log-	
likelihood	
to	find,	MLE:	

Step	2:	
Determine	the	nega1ve	
Hessian	matrix	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

The	Table	for	Generalized	Linear	Regression:	Logis1c	Regression	
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Step	4:	
Define	
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The	Table	for	Generalized	Linear	Regression:	Poisson	Regression	


