Stat 306:

Finding Relationships in Data.

Lecture 23
6.2 Count Regression



a.k.a Non-negative integers!

Counts!

O, 1.3, 4,..
9, 10, 11, 12, ...

34, 35, 36.....



Count Regression

Y, the outcome variable, is a count,
l.e. a non-negative integer.

X is any explanatory covariate.



Count Regression

Y; ~ Poisson(A) with mean A > 0

We want to model the mean, A, as a function of covariates X:
Y; ~ Poisson(\(x;)), where A(x;) = exp{x; 3} or

log A(x;) = x; B.

Important property of the Poisson distribution: E[Y]=A
Var[Y] = A



Important property of the Poisson distribution:

E[Y] =A
Var[Y] = A

Homoscedasticity?



Probability density
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Probability density

Section 2.2 - Statistical linear regression model
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Examples of general regression

1. Usual regression (normal or Gaussian response): Y; ~ N(u,0?) is extended to Y ~ N(x73,0%). That is,
p(xi) = pi = x; B.

2. Binary regression (logistic regression as special case): Y; ~Bernoulli(7), where 7 =Pr(Y; =1) and 1 — 7 =
Pr(Y; = 0), is extended to Y; ~ Bernoulli(7(x;)), where m(x;) = exp{x7 3}/[1 + exp{x} B} or

log{%} o

[Logistic cdf is F(z) = €*/(1 + €*), —00 < z < o9

3. Count regression (Poisson regression as special case): Y; ~ Poisson(\) with mean A > 0 and P(Y; = y) =
Me Ayl (y=0,1,...) is extended to Y; ~ Poisson(A(x;)), where \(x;) = exp{x? 3} or

log A\(x;) = x; B.

Poisson regression can be used for insurance claim data to model the number of car accidents (or claims)
per year for individuals as a function or demographic and risk factors.




Maximum Likelihood Estimation

Steps to get Maximum Likelihood Estimates:
1. Define the Likelihood as function of the parameters given the data.
2. Define the log-Likelihood.

3. Maximize the log-Likelihood or minimize the negative log-Likelihood.

For Poisson regression, we have:

n —A(x;)

L(B; data) = [ [IA(x:)] n

Oraate) = LIPC0 ands g gidate) = S urtog ) — A — o)
=1

n

= Y {yix]B —exp(x] B) — log(y:)}
1=1
Unfortunately...

There is no closed form solution, but statistical software obtain Bo, Bl with an iterative method.



Maximum Likelihood Estimation

Poisson: P(Y = y;x) = [A(x)]Ye™*®) /y!, A\(x) = exp{xT B} (intercept 1 included in x).
Data (x;,v:),i=1,...,n; y; € {0,1,2,...}.

Poisson likelihood in 3 is:
—)\(xz)

L(B; data) H [A(x;)]

Loglikelihood in 3 is:

log L(B; data) = Z{yi log A(x;) — A(xs) — log(y:!)}

n

= > {yix] B — exp(x] B) — log(y:)}

i=1
For the null model of no effect for explanatory variables, A\ = €0 for all 4, log-likelihood is:

> {yilog A — X —log(y;))} = yy log A —nA — > " log(y:)),
i=1 =1

A

with maximum likelihood estimate (MLE) A =7y




Maximum Likelihood Estimation

Steps to get standard error for the Maximum Likelihood Estimates
(MLE):

1. Take the second derivative of the log-Likelihood function. This is the

Hessian Matrix. The negative of the Hessian is the Fisher information
matrix.

2. Evaluate the Fisher Information matrix at the MLE. This is known as
the “observed Fisher Information matrix”.

3. Take the inverse of the “observed Fisher Information matrix”. This is
your estimate for the Variance-Covariance matrix of your parameter.
The diagonal elements are the estimated Variances.

4. Take the square root of the diagonal elements to obtain the standard
errors.



Maximum Likelihood Estimation

Gradient and Hessian.
log L(B; data) = Z{yix?,ﬁ — exp(x!B) —log(y:))}
i=1

0log L(B; data) _ zn:{xzyz — x;exp(xi B)}

op i=1
—8%log L(B; data) e
3,33,3T = ; Xix;;r eXP(XzT,B)

SEs for Bs come from the square root of the diagonal elements of

~1
[szx exp(X; ,3 ‘13]




Diagnostics for Poisson regression: The Deviance.

The residual deviance becomes (37, log(y;!) cancels and A; = exp(x73))
2[5()‘§S)a ceey )\%S)) - 5(5\1, XX 5\n)] =2 [Z{yi logyi —yi} — Z{yixfﬂ - eXP(X;TPﬂ)}] .
i=1 i=1
The null deviance becomes (5\7, =7)

20e(AY, .. A — (g, ..., 7)] =2 [Z{yi logyi — yi} — {nylogy — ny}] =2 [Z yilogy; — nylog?] :

Here 0log0 = 0 as limit of zlogz as z — 0.

0 < residual deviance < null deviance because ¢(saturated) > ¢(explanatory) > ¢(no explanatory).




Diagnostics for Poisson regression: The AIC

1. The AIC seeks to identify “good models” by considering both the likelihood and the
number of parameters in the model:

AIC = -2 -log(Likelihood) + 2 - (# of parameters)

2. Assuch itis similar to the adjusted R2.

3. Lower AIC suggests that the model is better.



Interpretation for Poisson regression:

Suppose model is P(Y; = y;x;) = e‘AiA?/y!, where \; depends on x;.
The model-based expected number of occurrences of the k claims is

n

E, IZn:E[I(Yz’ = k)] :zn:P(Yi = k;xi) = Y e MAF/kL.

i=1
For a fitted model, replace \; by N = exp{x?,@} from the regression model.
Expected number of 0s from the model is )., e~ i,

< A

Expected number of 1s from the model is Y ; e \;.

Expected number of 2s from the model is 37, e=*A2/2.



Excellent information on Poisson Regression:

https://freakonometrics.hypotheses.org/9593

https://freakonometrics.hypotheses.org/2289




The Table for Generalized Linear Regression: Logistic Regression

Step O:
For 6, define

the log-likelihood.

Step 1:

Maximize the log-
likelihood

to find, MLE: 0

Step 2:
Determine the negative
Hessian matrix

Step 3:
Deﬁpe
se(f )=

estimate of \/Var

Step 4:
Define
(1-0)% C.I. =

O:tcxse

AR YARY Y. f\/\

Population Log- MLE The negative | Variance Standard Confidence
parameter likelihood Hessian of the Error of Interval
or “something estimator estimator
we would like to
estimate”
B ‘Olog L(B; data) Numerical H :;xixz-”i(l—”i) Var[B] Se(b) = C.l. for B
0 methods = -1 "
7 (H) diag(\/(H-(5)
) eBo+Brza .t Bpzip Delta method?
71’(513) #(zi) = 1 + ePotBiza: B,z http://www.indiana.edu/~jslsoc/stata/ci_computations/spost_deltaci.pdf




The Table for Generalized Linear Regression: Poisson Regression

Step O:
For 6, define

the log-likelihood.

Step 1:

Maximize the log-
likelihood

to find, MLE: 0

Step 2:
Determine the negative
Hessian matrix

Step 3:
Deﬁpe
se(f )=

estimate of \/Var

Step 4:
Define
(1-a)% C.I. =

0 + ¢ x se(f)

CC NC NgZ N NOC N

Population Log- MLE The negative | Variance Standard Confidence
parameter likelihood Hessian of the Error of Interval
or “something estimator estimator
we would like to
estimate”
B dlog L([3; data) Numerical H Var[B] Se(b) = C.l. for B
. 8 methOdS = 3 xixrex xT - '1 A
s 2 ewp) | = (H) diag(y/(H-(3)))
o\ T Delta method?
)‘(x’l) - exp{xi ,3} http://www.indiana.edu/~jslsoc/stata/ci_computations/spost_deltaci.pdf




