
Stat	306:		
Finding	Rela1onships	in	Data.	

Lecture	22	
6.2	Principal	Component	Analysis	+	Count	

Regression	
	



Kosinski	et	al.	(2013):	



Principal	component	analysis.	

•  Principal	component	analysis	(PCA)	is	a	dimensionality	reduc1on	technique	

•  many	sta1s1cal	models	suffer	from	high	correla1on	between	covariates.		

•  PCA	can	be	used	to	produce	linear	combina1ons	of	the	covariates	that	are	
uncorrelated	between	each	other.	

•  OOen	there	are	too	many	poten1al	variables.	

•  Some1mes	there	are	more	variables	than	observa1ons	(p>n)!	

•  PCA	can	be	used	to	reduce	the	number	of	variables	in	the	model	while	
maintaining	as	much	informa1on	as	possible.	

hRp://www.milanor.net/blog/performing-principal-components-regression-pcr-in-r/	

Excellent	explana1on:	





Steps	to	obtain	principal	components:	

1. 	Calculate	the	es1mated	covariance	matrix	of	X	(N	observa1ons,	K	variables),	
is	the	matrix	Σ	with	entries:	

2.	Obtain	eigenvalues	and	their	corresponding	eigenvectors	for	this	covariance	
matrix.	
	
hRps://www.youtube.com/watch?v=IdsV0RaC9jM&ab_channel=patrickJMT	
	
3.	Reduce	X	to	a	lower-dimensional	projec1on:	the	eigenvectors	corresponding	to	
the	largest	eigenvalues.	
	
4.	Center	the	eigenvectors.		This	is	the	“best”	projec1on	of	X	onto	the	lower-
dimension.	
	
5.	Determine	what	percentage	of	the	original	variance	is	maintained	in	the	lower-
dimensional	projec1on.	

hRps://en.wikipedia.org/wiki/Covariance#Calcula1ng_the_sample_covariance	

Σ	 for	k	in	1,…K,	and		j	in	1,...,J	



Why	does	this	work?	



Why	does	this	work?	



However….	
	
	
	 	Instead	of	using	the	covariance	matrix	of	X	to	do	PCA,	we	should	use	the	

	correla1on	matrix	of	X.		In	this	way	all	the	variables	in	the	X	matrix	are	on	a
	similar	scale.	

To	go	from	a	Covariance	matrix,	Σ,	to	a	correla1on	matrix	ρ:	
	
	
	

Then	obtain	eigenvalues	and	their	corresponding	eigenvectors	for	ρ	as	before.	



PCA	Example	1:		Wine	data.	



PCA	Example	1:		Wine	data.	
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We	want	to	model	the	mean,	λ	,	as	a	func1on	of	covariates	X:	

E[Y]	=	λ	
Var[Y]	=	λ	

Important	property	of	the	Poisson	distribu1on:	

Count	Regression	



Maximum	Likelihood	Es1ma1on	

Steps	to	get	Maximum	Likelihood	Es=mates:	
	
1.  Define	the	Likelihood	as	func1on	of	the	parameters	given	the	data.	

2.  Define	the	log-Likelihood.	

3.  Maximize	the	log-Likelihood	or	minimize	the	nega1ve	log-Likelihood.	

For	Poisson	regression,	we	have:	

Unfortunately…	

and:	



Maximum	Likelihood	Es1ma1on	



Maximum	Likelihood	Es1ma1on	

Steps	to	get	standard	error	for	the	Maximum	Likelihood	Es=mates	
(MLE):	
	
1.  Take	the	second	deriva1ve	of	the	log-Likelihood	func1on.	This	is	the	

Hessian	Matrix.		The	nega1ve	of	the	Hessian	is	the	Fisher	informa1on	
matrix.	

2.  Evaluate	the	Fisher	Informa1on	matrix	at	the	MLE.		This	is	known	as	
the	“observed	Fisher	Informa1on	matrix”.	

3.  Take	the	inverse	of	the	“observed	Fisher	Informa1on	matrix”.		This	is	
your	es1mate	for	the	Variance-Covariance	matrix	of	your	parameter.		
The	diagonal	elements	are	the	es1mated	Variances.	

4.  Take	the	square	root	of	the	diagonal	elements	to	obtain	the	standard	
errors.	

	



Maximum	Likelihood	Es1ma1on	



Diagnos1cs	for	Poisson	regression:	The	Deviance.	



Diagnos1cs	for	Poisson	regression:	The	AIC	

3. 	Lower	AIC	suggests	that	the	model	is	beRer.	

1.  		The	AIC	seeks	to	iden1fy	“good	models”	by	considering	both	the	likelihood	and	the	
	number	of	parameters	in	the	model:	

2. 	As	such	it	is	similar	to	the	adjusted	R2.	



Interpreta1on	for	Poisson	regression:	



hRps://freakonometrics.hypotheses.org/9593	
	

hRps://freakonometrics.hypotheses.org/2289	

Excellent	informa=on	on	Poisson	Regression:	


