Stat 306:

Finding Relationships in Data.
Lecture 21
6.2 Logistic regression (Part 3) + Principal
Component Analysis



Maximum Likelihood Estimation

Steps to get Maximum Likelihood Estimates:
1. Define the Likelihood as function of the parameters given the data.
2. Define the log-Likelihood.

3. Maximize the log-Likelihood or minimize the negative log-Likelihood.

For logistic regression, we have:

logistic negative log-likelihood

— log L(3; data) = Z(x By + Zlog + exp{x; B}]

Unfortunately...

There is no closed form solution, but statistical software obtain Bg, Bl with an iterative method.



Maximum Likelihood Estimation

Steps to get standard error for the Maximum Likelihood Estimates
(MLE):

1. Take the second derivative of the negative log-Likelihood function.

This is the Hessian Matrix. The negative of the Hessian is the Fisher
information matrix.

2. Evaluate the Fisher Information matrix at the MLE. This is known as
the “observed Fisher Information matrix”.

3. Take the inverse of the “observed Fisher Information matrix”. This is
your estimate for the Variance-Covariance matrix of your parameter.
The diagonal elements are the estimated Variances.

4. Take the square root of the diagonal elements to obtain the standard
errors.



Maximum Likelihood Estimation

Cov (@). Let 8 be the maximum likelihood estimate.
Equation for (asymptotic) standard errors, square root of the diagonal of the inverse of the negative Hessian

matrix:

_82 log L(0; data) ’ ]_1
8000" 6] ’

that is, get the Hessian matrix of negative second order derivatives, take the inverse, extract the diagonal com-
ponents and take square roots.

The Hessian of g measures the curvature of the neg;tive logjlikelihood surface at 8. The sharper the curvature
is, the smaller the “uncertainty” and the smaller + figure for the SE.

The more curved the surface (or parabola if @ has dimension 1), the larger the Hessian (second derivative)

and the smaller the inverse Hessian. SEs come from the sqrt of the diagonal elements of the inverse Hessian.




Maximum Likelihood Estimation

To get standard errors, confidence intervals, we must get the second derivative
of the logistic negative log-likelihood:

Let m; = m;(x:; 8) = exp{x! B}/[1 + exp{x} B} = 1/[1 + exp{—x} B}], 1 — m; = 1/[1 + exp{x} B}]. The gradient

vector is:

alog L(ﬂ, data) _ szyz 4 Z exp{x’ ’ﬂ} _ Z X;Y; + leﬂ'z

“1+exp{xIB} o

The Hessian matrix of second order derivatives is:

0%log L(B;data) -
- 9305 = E x;x; m;(1 — m;), (1)

making use of -4 7z and dz/dB" = xTz, z = exp{xT 3}.

dz l +z (l-*—

When (1) is evaluated at the maximum likelihood estimate, ; is replaced by #; = 1/[1 + exp{—x78}]. To check

that this is valid, try to get this result in non-matrix form when p = 1 (one explanatory variable).



Diagnostics for logistic regression: The Deviance.

The deviance of a model is defined as equal to twice the negative log-likelihood:

Deviance(model) = -2 (log-Likelihood(model))

We often compare the Null Deviance, the Deviance for the null model (without X):

Null Deviance = —2- >, (yilog(9) + (1 — yi)log(1 — 3))

To the Residual Deviance (Deviance of model with covariates X):

Residual Deviance = —2- ) ", (y;log(7;) + (1 — y;)log(1 — 7;))

where:

eBot+B1zirt+...+BpTip
i = Pr(Y =1|X =x;) =

1+ 8B0+B1$i1 +...+BpTip

Lower residual deviance suggests that the model is better with the variables included.



Diagnostics for logistic regression: The AIC

1. The AIC seeks to identify “good models” by considering both the likelihood and the
number of parameters in the model:

AIC = -2 -log(Likelihood) + 2 - (# of parameters)

2. Assuch itis similar to the adjusted R2.

3. Lower AIC suggests that the model is better.



Misclassification and the ROC curve

For comparison of logistic regression models with different subsets of explanatory variables, misclassification
rates are one criteria; these can be in-sample (same data used to fit the data and estimate misclassification)

or out-of-sample (training set to fit models and holdout set to estimate misclassification).

One can define

(6.7) o= PPl 0 XTisrowiof X, i=1,...,n,
1+ exp{x! 3}

One can then set a threshold 7 € (0,1) and define a predicted #;, where

. 0 ifo<m <,
(6.8) Ui = . .
1 ifr<m <1l

The choice of threshold depends on the distribution of the n #;’s. If the proportion of 1s in the y; is closer
to 0, then so is the median of the #;’s. The counts and proportions for the in-sample misclassification are
summarized in the table below. There are two types of misclassification errors: (i) false positive: predicting

y = 1 when true class is y = 0; (ii) false negative: predicting § = 0 when true class is y = 1.



Misclassification and the ROC curve

One can then set a threshold 7 € (0,1) and define a predicted #;, where

0 ifo<m <7
6.8 ji = STET
(68) Y {1 ifr < < 1.

The choice of threshold depends on the distribution of the n #;’s. If the proportion of 1s in the y; is closer
to 0, then so is the median of the #;’s. The counts and proportions for the in-sample misclassification are

summarized in the table below. There are two types of misclassification errors: (i) false positive: predicting

7 = 1 when true class is y = 0; (ii) false negative: predicting § = 0 when true class is y = 1.

*<T T>T count misclass rate
y=0 noo no1 ngo + no1 | no1/[noo + no
y=1 N0 n nyo + ny1 | nio/[nio + Ny

all Moo + Nio N1 + Ny n (no1 + nyp)/n




Misclassification and the ROC curve

One can then set a threshold 7 € (0,1) and define a predicted ;, where

. 0 ifo<<m <,
(6.8) Yi = . .
1 ifr<mi <1l

The choice of threshold depends on the distribution of the n #;’s. If the proportion of 1s in the y; is closer
to 0, then so is the median of the #;’s. The counts and proportions for the in-sample misclassification are
summarized in the table below. There are two types of misclassification errors: (i) false positive: predicting

7 = 1 when true class is y = 0; (ii) false negative: predicting § = 0 when true class is y = 1.

*<T T>T count misclass rate
y=0 Noo no1 ngo + no1 | no1/[noo + no1)
y=1 Ny n nyo + ny1 | nio/[nio + Ny

all noo Anio  no1 Aniy n (no1 +nyg)/n

N False Positives
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Misclassification and the ROC curve

Note that: The misclassification rate among the true Os is mg1/[noo + no1] and this decreases as 7

increases. The misclassification rate among the true 1s is ni9/[n10 + n11] and this increases as 7 increases

Sensitivity:  True Positive rate (= n11/(n11+n10))

Specificity:  True Negative rate ( = n00/(n00 + n01) )

*<T T>T | count | misclass rate
y=20 oo Nno1 ngo + no1 | no1/[noo + noy
y= 1 nw niy n10+n11 | n1o/[n10 + N

00 *\nw No1 ﬁnu (ng1 +nyo)/n

) FaIse Positives
True Negatives True Positives

False Negatives



Misclassification and the ROC curve

Sensitivity:  True Positive rate (= n11/(n11+n10))

Specificity:  True Negative rate ( = n00/(n00 + n01) |

Source: https://commons.wikimedia.org/w/index.php?curid=65826093

relevant elements

false negatives true negatives

true positives = false positives

selected elements

How many relevant How many negative
items are -Sele(t{__‘.d? ‘Ee[ected e|ement5
e.g. How many sick are truly negative?
people are correctly e.g. How many
identified as having healthy peple are
the condition. identified as not

having the condition.

Sensitivity= —— Specificity =




The Receiver Operating Characteristic curve (ROC curve)

Is a plot that show how Sensitivity and Specificity change with different
values for the threshold:
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A ROC curve showing two tests. The red test is closer to the diagonal

and is therefore less accurate than the green test.



The Receiver Operating Characteristic curve (ROC curve)

The ROC curve is a plot that show how Sensitivity and Specificity change with different
values for the threshold:
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and is therefore less accurate than the green test.

http://www.statisticshowto.com/receiver-operating-characteristic-roc-curve/



The Receiver Operating Characteristic curve (ROC curve)

The ROC curve is a plot that show how Sensitivity and Specificity change with different
values for the threshold:
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Questions?

Excellent explanation of MLE for Logistic regression:
http://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf



Principal component analysis.

* Principal component analysis (PCA) is a dimensionality reduction technique
* many statistical models suffer from high correlation between covariates.

* PCA can be used to produce linear combinations of the covariates that are
uncorrelated between each other.

e Often there are too many potential variables.
* Sometimes there are more variables than observations (p>n)!

e PCA can be used to reduce the number of variables in the model while
maintaining as much information as possible.

Excellent explanation:

http://www.milanor.net/blog/performing-principal-components-regression-pcr-in-r/



Steps to obtain principal components:

1. Calculate the estimated covariance matrix of X (N observations, K variables),
is the matrix 2 with entries:

_ Z i) (Xie — Xx) forkin1,..K,and jin1,...,J

https://en.wikipedia.org/wiki/Covariance#Calculating the sample covariance

2. Obtain eigenvalues and their corresponding eigenvectors for this covariance
matrix.

https://www.youtube.com/watch?v=IdsVORaC9iM&ab channel=patrickIMT

3. Reduce X to a lower-dimensional projection: the eigenvectors corresponding to
the largest eigenvalues.

4. Center the eigenvectors. This is the “best” projection of X onto the lower-
dimension.

5. Determine what percentage of the original variance is maintained in the lower-
dimensional projection.



Why does this work?

Suppose X = (X1i,...,X,)T is a random vector with covariance matrix ¥ = (0jk)1<jk<p. Data are
(i1,...,Tip), © = 1,...,n, considered as n independent realizations of (X1,...,X,). The sample covariance
matrix is denoted as S, and this is an estimate of X.

From Appendix A, w'X = 7%, w;X; is a linear combination with variance Var (w’X) = w'Xw =

=1 2k WjWkOj-

For the first principal component, we want to find a coefficient vector w with unit length such that

(7.1) Var (w/'X) = Var (w? (X —a)) = w! Zw

is maximized. Why is unit length w?w = 1 condition imposed?



Why does this work?

To solve this problem using calculus, we introduce the Lagrangian function:

(7.2) Hw) = wiZw-Awlw-—1),
(7.3) oH 2Xw — 2\w
. S .

Set to zero and let the solution involve (w*, \*):
(7.4) 2Xw* —2X\"wW* =0, or Tw"* = \*"w".

Equation (7.4) is the equation for an eigensystem (review your linear algebra textbook if needed). So w* is a
unit-length eigenvector of ¥ with eigenvalue A*. Because X is symmetric, the eigenvalues are real. Because

3’ is non-negative definite, the eigenvalues are non-negative.



However....

Instead of using the covariance matrix of X to do PCA, we should use the
correlation matrix of X. In this way all the variables in the X matrix are on a
similar scale.

To go from a Covariance matrix, 2, to a correlation matrix p:

Then obtain eigenvalues and their corresponding eigenvectors for p as before.
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