
Stat	306:		
Finding	Rela1onships	in	Data.	

Lecture	19	
6.2	Logis1c	regression	(Part	2)	

	



From	last	lecture,	we	have	three	equivalent	ways	to	
write	out	the	logis6c	regression	model:	

Recall	that:	



From	last	lecture,	we	have	three	equivalent	ways	to	
write	out	the	logis6c	regression	model:	
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non-smokers	
	
X=0	

smokers	
	
X=1	
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16	

Disease	
	
Y	=	1	
	
Y	=	0		



Pr(Y=1|X=0)	=	3/8	=	0.375	
	
oddsX=0	=	3/5	=	0.6	

Pr(Y=1|X=0)	=	5/8	=	0.625	
	
oddsX=1		=	5/3	=	1.667	

probability	
	
odds	

ODDS	RATIO		 (5/3)	/	(3/5)	=		25/9	=		2.778		

	 	The	odds	of	being	diseased	are	2.778	1mes	higher	for		 	
	 	smokers	than	for	non-smokers.	Interpreta1on:	



Pr(Y=1|X=0)	=	3/8	=	0.375	
	
oddsX=0	=	3/5	=	0.6	

Pr(Y=1|X=0)	=	5/8	=	0.625	
	
oddsX=1		=	5/3	=	1.667	

probability	
	
odds	

ODDS	RATIO		 (5/3)	/	(3/5)	=		25/9	=		2.778	

	 	The	odds	of	being	diseased	are	2.778	1mes	higher	for		 	
	 	smokers	than	for	non-smokers.	Interpreta1on:	

Exercise: 	Recall	the	logis1c	model:	 	 	 	 	 	 	 	 	….	Therefore:						OR	=	exp(β1)		
		



non-smokers	
	
X1	=	0	
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X1	=	1	
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Disease	
	
Y	=	1	
	
Y	=	0		
	
	
Sex	
	
Male	
X2	=	0	
	
Female	
X2	=	1	
	



Pr(Y=1|X1=0,	X2=0)	=	2/4	=	0.5	
Pr(Y=1|X1=0,	X2=1)	=	1/4	=	0.25	
	
oddsX1=0,	X2=0	=	2/2	=	1:1	
	
oddsX1=0,	X2=1	=	1/3	=	0.333	
	

probability	
	
odds	

Pr(Y=1|X1=1,	X2=0)	=	3/4	=	0.75	
Pr(Y=1|X1=1,	X2=1)	=	2/4	=	0.5	
	
oddsX1=1,	X2=0	=	3/1	=	3	
	
oddsX1=1,	X2=1	=	2/2	=	1	
	



Pr(Y=1|X1=0,	X2=0)	=	2/4	=	0.5	
Pr(Y=1|X1=0,	X2=1)	=	1/4	=	0.25	
	
oddsX1=0,	X2=0	=	2/2	=	1:1	
	
oddsX1=0,	X2=1	=	1/3	=	0.333	
	

probability	
	
odds	
	
	
	
odds	ra1o	

Pr(Y=1|X1=1,	X2=0)	=	3/4	=	0.75	
Pr(Y=1|X1=1,	X2=1)	=	2/4	=	0.5	
	
oddsX1=1,	X2=0	=	3/1	=	3	
	
oddsX1=1,	X2=1	=	2/2	=	1	
	

ORmale:		3:1 		 	ORfemale:		3:1 			
	



Pr(Y=1|X1=0,	X2=0)	=	2/4	=	0.5	
Pr(Y=1|X1=0,	X2=1)	=	1/4	=	0.25	
	
oddsX1=0,	X2=0	=	2/2	=	1:1	
	
oddsX1=0,	X2=1	=	1/3	=	0.333	
	

probability	
	
odds	
	
	
	
odds	ra1o	

Pr(Y=1|X1=1,	X2=0)	=	3/4	=	0.75	
Pr(Y=1|X1=1,	X2=1)	=	2/4	=	0.5	
	
oddsX1=1,	X2=0	=	3/1	=	3	
	
oddsX1=1,	X2=1	=	2/2	=	1	
	

	ORmale:		3:1 	ORfemale:		3:1 		….	so		do	we	have		OR	=	3		or	OR	=	2.778	?	
	



odds	ra1o	 	ORmale:		3:1 	ORfemale:		3:1 		….	so		do	we	have		OR	=	3		or	OR	=	2.778	?	
	

Notes:	
		 •  This	has	nothing	to	do	with	unobserved	confounding,	same	

thing	happens	if	we	randomize	subjects.		
(Exercise	:	Check	to	see	that	cor(x1,	x2)	=	0)		

•  This	happens	because	of	the	“non-collapsibility”	of	the	OR.	



hep://jakewesfall.org/blog/index.php/2018/03/12/logis1c-regression-is-not-fucked/	

In	both	these	example	the	covariate	“X”	is	uncorrelated	with	the	covariate	“Colour”	

Yet,	since	the	logis1c	func1on	is	not	collapsible,	the	average	of	the	blue		
and	red	curves	is	not	equal	to	the	black	curve….	very	curious...	

Reading	:	“Second	argument:	Omieed	non-confounders	in	logis1c	regression”	



Biosta1s1cal	Methods:	The	Assessment	of	Rela1ve	Risks	
By	John	M.	Lachin	

•  Maybe	there	are	beeer	measure	to	describe	the	effect?	

•  Since	OR	is	so	difficult	to	interpret,	perhaps	we	should	use	RR?	



To	convert	an	Odds	Ra1o	to	a	Rela1ve	Risk,	you	need	to	know											,	which	in	our	
example	is	Pr(Y=1|X=0).		Here	is	the	formula:	
	

(Exercise	:	Derive	the	formula.)	

More	info:	hep://www.bmj.com/content/bmj/348/bmj.f7450.full.pdf	



Maximum	Likelihood	with		
5	coins	tosses…	
	



Maximum	Likelihood	with		
5	coins	tosses…	
	

Examples:	 Prob(							=		0.5	|	0	heads	out	of	5	tosses)	=	0.03	
Prob(							=	0.2	|	4	heads	out	of	5	tosses)	=	0.01		
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Maximum	Likelihood	with		
5	coins	tosses…	
	

Out	of	10	tosses	
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Maximum	Likelihood	with		
5	coins	tosses…	
	

Out	of	15	tosses	
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Maximum	Likelihood	with		
5	coins	tosses…	
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Maximum	Likelihood	with		
5	coins	tosses…	
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X=0	
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Coin	toss	example:	
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This	can	get	difficult	to	work	with,	since	it	involves	lots	of	mul1plica1ons…	
	
So	instead	we	omen	work	with	the	log-likelihood,	log(L).	
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Consider	only	sample	of	Y	…		what	is	the	maximum	likelihood	es1mate	for	mu?		





Now	consider	Y	and	X	…		what	is	the	maximum	likelihood	es1mate	for	β?		
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The	log-likelihood	for	logis6c	regression:	

and	the		

Unfortunately…	



To	get	standard	errors,	confidence	intervals,	we	must	get	the	second	deriva1ve	
of	the	logis6c	nega6ve	log-likelihood:	




