Stat 306:

Finding Relationships in Data. Lecture 19

6.2 Logistic regression (Part 1)

Age vs. Money

Dependent variable

Independent variable

Sample, n=9

Population

Population parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \mu_{0}=\mu_{1} \\
& H_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Sample
statistics

$$
\begin{aligned}
& \bar{y}_{0}=56 \\
& \bar{y}_{1}=27 \\
& \bar{y}_{0}-\bar{y}_{1}=29 \\
& s_{p}=10.81 \\
& t=2.68, d f=7 \\
& p \text {-value }=0.03 \\
& 95 \% \text { C.I. }=[3.4,54.6]
\end{aligned}
$$

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
H_{0}: \beta_{1}=0
$$

$$
H_{1}: \beta_{1} \neq 0
$$

Sample, $\mathrm{n}=9$

	χ	y
	82	71
	45	54
ค	71	43
\dot{p}	22	45
i	29	21
$\stackrel{i}{i}$	9	11
\%	12	30
T	18	45
\dot{T}	24	10

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable

$$
Y \longrightarrow \begin{aligned}
& \text { Use cash regularly? } \\
& \text { (yes/no) }
\end{aligned}
$$

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
H_{0}: \beta_{1}=0
$$

$$
\mathrm{H}_{1}: \beta_{1} \neq 0
$$

Sample, $\mathrm{n}=9$
解

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \xrightarrow[\text { Years }]{\text { Age in }}
$$

RESPONSE variable

$$
Y \longrightarrow \begin{aligned}
& \text { Use cash regularly? } \\
& \text { (yes/no) }
\end{aligned}
$$

Population

Population parameters

$$
\beta_{0}, \sigma^{2}
$$

Hypothesis Test $H_{0} \cdot \beta=0$
$H_{2} \quad{ }_{1} \neq 0$

Sample, $\mathrm{n}=9$
Sample statistics

$$
\begin{aligned}
& b_{0}=17.7 \\
& b_{1}=-5 \\
& s=15 \\
& R^{2}=v .49
\end{aligned}
$$

For parameter β_{1}
95% C.I. $\left.\Rightarrow \quad{ }^{6} \Delta 5,1.05\right]$
p-value

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { Use cash regularly? } \\ & \text { (yes/no) }\end{aligned}$

Population

$$
\begin{aligned}
& \text { Instead of : } \\
& y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} \quad, \quad i=1, \ldots, n \\
& \text { We have: } \\
& p_{i}=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{i}\right)}} \quad, \quad i=1, \ldots, n
\end{aligned}
$$

Sample, $\mathrm{n}=9$

	χ	y
	82	1
	45	1
	71	1
\dot{T}	22	0
i	29	0
i	9	0
$\stackrel{ }{ }$	12	0
i	18	1
$\dot{\pi}$	24	0

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { Use cash regularly? } \\ & \text { (yes/no) }\end{aligned}$

Population

$$
\begin{aligned}
& \text { Instead of : } \\
& y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} \quad, \quad i=1, \ldots, n \\
& \text { We have: } \\
& p_{i}=\frac{1}{1+e^{-\left(\beta_{0}+\beta_{1} x_{i}\right)}} \quad, \quad i=1, \ldots, n
\end{aligned}
$$

Sample, $\mathrm{n}=9$

	χ	y
	82	1
	45	1
	71	1
\dot{T}	22	0
i	29	0
i	9	0
$\stackrel{ }{ }$	12	0
i	18	1
$\dot{\pi}$	24	0

prediction equation ?

Standard linear regression:

1. We assume outcomes are normally distributed:

$$
Y \sim N\left(\mu, \sigma^{2}\right)
$$

2. Depending on the values of covariates, each outcome $(i=1, \ldots, n)$ is normally distributed with a different mean:

$$
Y_{i} \sim N\left(\mathbf{x}_{i}^{T} \boldsymbol{\beta}, \sigma^{2}\right)
$$

or we write this out:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}+\epsilon_{i}
$$

3. In other words, we model how the mean of Y changes given different values for X :

$$
\mathrm{E}\left(Y_{i} ; \mathbf{x}_{i}\right)=\mu\left(\mathbf{x}_{i}\right)=\mu_{i}=\mathbf{x}_{i}^{T} \boldsymbol{\beta}
$$

Standard logistic regression:

1. We assume outcomes are distributed according to a Bernoulli distribution:

$$
Y \sim \operatorname{Bernoulli}(\pi) \quad, \text { where } \pi=\operatorname{Pr}(Y=1) \in(0,1)
$$

2. Depending on the values of covariates, each outcome $(i=1, \ldots, n)$ is a Bernoulli distributed with a different mean:

$$
Y_{i} \sim \operatorname{Bernoulli}\left(\pi\left(\mathbf{x}_{i}\right)\right)
$$

or we write this out:
$\operatorname{Pr}\left(Y_{i}=1\right)=\pi\left(\mathbf{x}_{i}\right)$
$=\exp \left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right\} /\left[1+\exp \left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right\}\right]$
3. In other words, we model how the log-odds of $Y=1$ vs. $Y=0$ changes given different values for X :

$$
\log \left\{\frac{P\left(Y_{i}=1 ; \mathbf{x}_{i}\right)}{P\left(Y=0 ; \mathbf{x}_{i}\right)}\right\}=\log \left\{\frac{\pi\left(\mathbf{x}_{i}\right)}{1-\pi\left(\mathbf{x}_{i}\right)}\right\}=\mathbf{x}_{i}^{T} \boldsymbol{\beta} \in(-\infty, \infty)
$$

Standard logistic regression:

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}=1\right) & =\pi\left(\mathbf{x}_{i}\right) \\
& =\exp \left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right\} /\left[1+\exp \left\{\mathbf{x}_{i}^{T} \boldsymbol{\beta}\right\}\right] \\
& =\frac{1}{1+\exp \left(-x_{i}^{T} \beta\right)}
\end{aligned}
$$

In other words, we model how the log-odds of $Y=1$ vs. $Y=0$ changes given different values for X :

$$
\log \left\{\frac{P\left(Y_{i}=1 ; \mathbf{x}_{i}\right)}{P\left(Y=0 ; \mathbf{x}_{i}\right)}\right\}=\log \left\{\frac{\pi\left(\mathbf{x}_{i}\right)}{1-\pi\left(\mathbf{x}_{i}\right)}\right\}=\mathbf{x}_{i}^{T} \boldsymbol{\beta} \in(-\infty, \infty)
$$

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { Use cash regularly? } \\ & \text { (yes } / \text { no })\end{aligned}$

Population

Population parameters

$$
\beta_{0}, \beta_{1}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Sample, $\mathrm{n}=9$

Sample statistics		χ	y
$\mathrm{b}_{0}=-3.78$		82	1
$\mathrm{b}_{1}=0.116$		45	1
Null deviance $=12.37$		45	
Residual deviance $=6.63$		7	
AIC $=10.6$	T	22	0
	\dot{T}	29	0
	T	9	0
	i	12	0
95\% C.I. $=[0.01,0.41]$ p-value $=0.179$	+	18	1

Age vs. Money

Interpretation: There is a 12.3% increase in the odds of carrying cash for every additional year in age. Note that $\exp (0.116)=1.123$ and consider the following:

$$
\begin{aligned}
& \operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)=\frac{1}{1+\exp \left(-\left(-3.78+0.12 x^{*}\right)\right)} \\
& \operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)=1-\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right) \\
& \frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
\end{aligned}
$$

Population

Population parameters β_{0}, β_{1}

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Sample, $\mathrm{n}=9$

Age vs. Money

Interpretation: There is a 12.3% increase in the odds of carrying cash for every additional year in age. Note that $\exp (0.1163)=1.123$ and consider the following:

$$
\begin{aligned}
& \operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)=\frac{1}{1+\exp \left(-\left(-3.78+0.12 x^{*}\right)\right)} \\
& \operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)=1-\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right) \\
& \frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
\end{aligned}
$$

Therefore:

$$
o d d s_{x^{*}}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
$$

$$
o d d s_{x^{*}+1}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}+1\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}+1\right)}=\exp \left(-3.78+0.12\left(x^{*}+1\right)\right)
$$

Age vs. Money

Interpretation: There is a 12.3% increase in the odds of carrying cash for every additional year in age. Note that $\exp (0.1163)=1.123$ and consider the following:

$$
\begin{aligned}
& \operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)=\frac{1}{1+\exp \left(-\left(-3.78+0.12 x^{*}\right)\right)} \\
& \operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)=1-\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right) \\
& \frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
\end{aligned}
$$

Therefore:

$$
o d d s_{x^{*}}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
$$

$$
o d d s_{x^{*}+1}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}+1\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}+1\right)}=\exp \left(-3.78+0.12 x^{*}+0.12\right)
$$

Age vs. Money

Interpretation: There is a 12.3% increase in the odds of carrying cash for every additional year in age. Note that $\exp (0.1163)=1.123$ and consider the following:

$$
\begin{aligned}
& \operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)=\frac{1}{1+\exp \left(-\left(-3.78+0.12 x^{*}\right)\right)} \\
& \operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)=1-\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right) \\
& \frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
\end{aligned}
$$

Therefore:
$o d d s_{x^{*}}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)$
$o d d s_{x^{*}+1}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}+1\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}+1\right)}=\exp \left(-3.78+0.12 x^{*}\right) \exp (0.12)$

Age vs. Money

Interpretation: There is a 12.3% increase in the odds of carrying cash for every additional year in age. Note that $\exp (0.1163)=1.123$ and consider the following:

$$
\begin{aligned}
& \operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)=\frac{1}{1+\exp \left(-\left(-3.78+0.12 x^{*}\right)\right)} \\
& \operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)=1-\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right) \\
& \frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
\end{aligned}
$$

Therefore:

$$
o d d s_{x^{*}}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
$$

$$
o d d s_{x^{*}+1}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}+1\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}+1\right)}=\left(o d d s_{x^{*}}\right) \exp (0.1163)
$$

$$
=\left(o d d s_{x^{*}}\right) 1.123
$$

Age vs. Money

Interpretation: There is a 12.3% increase in the odds of carrying cash for every additional year in age. Note that $\exp (0.1163)=1.123$ and consider the following:

$$
\begin{aligned}
& \operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)=\frac{1}{1+\exp \left(-\left(-3.78+0.12 x^{*}\right)\right)} \\
& \operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)=1-\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right) \\
& \frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
\end{aligned}
$$

Therefore:

$$
o d d s_{x^{*}}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)}=\exp \left(-3.78+0.12 x^{*}\right)
$$

$$
o d d s_{x^{*}+1}=\frac{\operatorname{Pr}\left(Y=1 \mid X=x^{*}+1\right)}{\operatorname{Pr}\left(Y=0 \mid X=x^{*}+1\right)}=\left(o d d s_{x^{*}}\right) \exp (0.1163)
$$

$$
=\left(o d d s_{x^{*}}\right) 1.123
$$

Therefore: the odds is increased by 12.3% for every additional 1 unit of x .

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { Use cash regularly? } \\ & \text { (yes } / \text { no })\end{aligned}$

Population

Population parameters

$$
\beta_{0}, \beta_{1}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Sample, $\mathrm{n}=9$

Sample statistics	χ	y
$\mathrm{b}_{0}=-3.78$	82	1
$\mathrm{b}_{1}=0.116, \exp (0.116)=1.123$	45	1
Null deviance $=12.37$	4	
Residual deviance $=6.63$	71	1
AIC $=10.6$	22	0
	29	0
	9	0
For parameter β_{1} :	12	0
95\% C.I. $=[0.01,0.41]$	18	1
p-value $=0.179$	24	0

The fitted logistic model:

$$
\begin{aligned}
& Z=-3.777+0.11 X \\
& \operatorname{Pr}(Y=1)=1 /(1+\exp (-Z))
\end{aligned}
$$

The fitted logistic model:

$$
\begin{aligned}
& Z=-3.777+0.11 X \\
& \operatorname{Pr}(Y=1)=1 /(1+\exp (-Z))
\end{aligned}
$$

```
> x <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
> y <- c(1, 1, 1, 0, 0, 0, 0, 1, 0)
> mod1<-glm(y~x, family="binomial")
> summary(mod1)
Call:
glm(formula = y ~ x, family = "binomial")
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-1.0115 & -0.7200 & -0.3554 & 0.1499 & 1.9254
\end{tabular}
```

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -3.77725 $\quad 2.45949 \quad-1.536 \quad 0.125$
$\begin{array}{lllll} & 0.11633 & 0.08655 & 1.344 & 0.179\end{array}$
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 12.3653 on 8 degrees of freedom
Residual deviance: 6.6337 on 7 degrees of freedom
AIC: 10.634
Number of Fisher Scoring iterations: 6

The fitted logistic model:
> Z <- cbind(1,1:100)\%*\%coef(mod1)
> fitted_line <- 1/(1+exp(-Z))

$$
\begin{aligned}
& Z=-3.777+0.11 X \begin{array}{ll}
& >\operatorname{plot}(y \sim x, \text { pch=20, cex=3, xlim=c(0,100), ylim=c(0,1)) } \\
& >\text { lines }(1: 100, \text { fitted_line, lwd=3) }
\end{array} \\
& \operatorname{Pr}(Y=1)=1 /(1+\exp (-Z))
\end{aligned}
$$

multiple

Age vs. Money

logistic regression preguctor varibles

$$
X_{2} \longrightarrow \begin{gathered}
\text { Student? } \\
\text { (Yes/No) }
\end{gathered}
$$

Population

Population
parameters

$$
\beta_{0}, \beta_{1}, \beta_{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

RESPONSE variable

Sample, $n=9$

multiple

logistic $\quad>\times 1<-c(82,45,71,22,29,9,12,18,24)$
$>x 2<-c(0,0,1,1,0,0,1,1,0)$
$>y<-c(1,1,1,0,0,0,0,1,0)$

Call:
glm(formula $=$ y ~ x1 + x2, family = "binomial")

Deviance Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-1.34142	-0.41561	-0.02688	0.00288	1.50144

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -10.4309 $\quad 8.1514-1.280 \quad 0.201$

x1	0.2783	0.2163	1.287	0.198
x 2	4.6852	4.5674	1.026	0.305

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 12.3653 on 8 degrees of freedom Residual deviance: 4.6866 on 6 degrees of freedom AIC: 10.687

Number of Fisher Scoring iterations: 7

multiple logistic regression

How do we interpret the β coefficients?
Each estimated coefficient is the expected change in the log odds of using cash for a unit increase in the corresponding predictor variable holding the other predictor variables constant at certain value.

Each exponentiated coefficient is the ratio of two odds, or the change in odds in the multiplicative scale for a unit increase
 in the corresponding predictor variable holding other variables at certain value.

multiple

 logistic
Age vs. Money

regression

Interpretation: There is a 32% increase in the odds of carrying cash for every additional year in age, when "student status" is fixed.
Note that $\exp (0.28)=1.32$ and consider the following:

$$
\begin{aligned}
& \operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}, X_{2}=x_{2}\right)=\frac{1}{1+\exp \left(-\left(-10.43+0.28 x_{1}^{*}+4.69 x_{2}\right)\right)} \\
& \operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)=1-\operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}, X_{2}=x_{2}\right) \\
& o d d s_{x_{1}^{*}, x_{2}}=\frac{\operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}, X_{2}=x_{2}\right)}{\operatorname{Pr}\left(Y=0 \mid X_{1}=x_{1}^{*}, X_{2}=x_{2}\right)}=\exp \left(-10.43+0.28 x_{1}^{*}+4.69 x_{2}\right) \\
& o d d s_{x_{1}^{*}+1, x_{2}}=\frac{\operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}+1, X_{2}=x_{2}\right)}{\operatorname{Pr}\left(Y=0 \mid X_{1}=x_{1}^{*}+1, X_{2}=x_{2}\right)}=\exp \left(-10.43+0.28\left(x_{1}^{*}+1\right)+4.69 x_{2}\right) \\
& o d d s_{x_{1}^{*}+1, x_{2}}=\frac{\operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}+1, X_{2}=x_{2}\right)}{\operatorname{Pr}\left(Y=0 \mid X_{1}=x_{1}^{*}+1, X_{2}=x_{2}\right)}=\exp \left(-10.43+0.28 x_{1}^{*}+0.28+4.69 x_{2}\right) \\
& o d d s_{x_{1}^{*}+1, x_{2}}=\frac{\operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}+1, X_{2}=x_{2}\right)}{\operatorname{Pr}\left(Y=0 \mid X_{1}=x_{1}^{*}+1, X_{2}=x_{2}\right)}=\left(o d d s_{x_{1}^{*}, x_{2}}\right) \exp (0.28) \\
& =\left(o d d s_{x_{1}^{*}, x_{2}}\right) 1.32
\end{aligned}
$$

multiple logistic regression with interaction effects

For non-students ($\times 2=0$), a one-year increase in age yields a change in log odds of 2.5. On the other hand, for the students ($x 2=1$), a one-year increase in age yields a change in log odds of $(2.5-2.4)=0.1$.

$$
\begin{aligned}
& >x 1<-c(82,45,71,22,29,9,12,18,24) \\
& >x 2<-c(0,0,1,1,0,0,1,1,0) \\
& >y<-c(1,1,1,0,0,0,0,1,0) \\
& >\bmod 3<-g l m(y \sim x 1 * x 2, \text { family="binomial") }
\end{aligned}
$$

multiple logistic regression with interaction effects

For non-students ($\times 2=0$), a one-year increase in age yields a change in log odds of 2.5. On the other hand, for the students ($x 2=1$), a one-year increase in age yields a change in log odds of $(2.5-2.4)=0.1$.

$$
\begin{aligned}
& \operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}, X_{2}=x_{2}\right)=\frac{1}{1+\exp \left(-\left(-92.289+2.497 x_{1}^{*}+89.803 x_{2}-2.394 x_{1}^{*} x_{2}\right)\right)} \\
& \operatorname{Pr}\left(Y=0 \mid X=x^{*}\right)=1-\operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}, X_{2}=x_{2}\right) \\
& o d d s_{x_{1}^{*}, x_{2}}=\frac{\operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}, X_{2}=x_{2}\right)}{\operatorname{Pr}\left(Y=0 \mid X_{1}=x_{1}^{*}, X_{2}=x_{2}\right)}=\exp \left(-92.3+2.5 x_{1}^{*}+89.8 x_{2}-2.4 x_{1}^{*} x_{2}\right) \\
& o d d s_{x_{1}^{*}+1, x_{2}}=\frac{\operatorname{Pr}\left(Y=1 \mid X_{1}=x_{1}^{*}+1, X_{2}=x_{2}\right)}{\operatorname{Pr}\left(Y=0 \mid X_{1}=x_{1}^{*}+1, X_{2}=x_{2}\right)}=\exp \left(-92.3+2.5\left(x_{1}^{*}+1\right)+89.8 x_{2}-2.4\left(x_{1}^{*}+1\right) x_{2}\right) \\
& o d d s_{x_{1}^{*}+1, x_{2}}=\exp \left(-92.3+2.5 x_{1}^{*}+2.5+89.8 x_{2}-2.4 x_{1}^{*} x_{2}-2.4 x_{2}\right)
\end{aligned}
$$

multiple logistic regression with interaction effects

For non-students ($x 2=0$), a one-year increase in age yields a change in log odds of 2.5. On the other hand, for the students ($x 2=1$), a one-year increase in age yields a change in log odds of $(2.5-2.4)=0.1$.

Notice a few things:

$$
\begin{aligned}
& \exp (2.5)=12.2 \\
& \exp (0.1)=1.11
\end{aligned}
$$

So for a non-student moving from
20 years old to 30 years old the odds of having cash increase from
$\exp (-92.3) * \exp \left(2.5^{*} 20\right)=0.000$
to
$\exp (-92.3) * \exp \left(2.5^{*} 30\right)=0.000$

multiple logistic regression with interaction effects

For non-students ($\mathrm{x} 2=0$), a one-year increase in age yields a change in log odds of 2.5. On the other hand, for the students ($x 2=1$), a one-year increase in age yields a change in log odds of $(2.5-2.4)=0.1$.

Notice a few things:

$$
\begin{aligned}
& \exp (2.5)=12.2 \\
& \exp (0.1)=1.11
\end{aligned}
$$

So for a non-student moving from
30 years old to 40 years old the odds of having cash increase from
$\exp (-92.3) * \exp \left(2.5^{*} 30\right)=0.000$
to
$\exp (-92.3) * \exp (2.5 * 40)=1980.293$

multiple logistic regression with interaction effects

For non-students ($\times 2=0$), a one-year increase in age yields a change in log odds of 2.5. On the other hand, for the students ($x 2=1$), a one-year increase in age yields a change in log odds of $(2.5-2.4)=0.1$.

Notice a few things:

$$
\begin{aligned}
& \exp (2.5)=12.2 \\
& \exp (0.1)=1.11
\end{aligned}
$$

So for a student moving from
30 years old to 40 years old the odds of having cash increase from $\exp (-92.3+89.8) * \exp ((2.5-2.4) * 30)=1.65$ to
$\exp (-92.3+89.8) * \exp ((2.5-2.4) * 40)=4.48$

X2- Student Status

multiple logistic regression with interaction effects

For non-students ($\mathrm{x} 2=0$), a one-year increase in age yields a change in log odds of 2.5. On the other hand, for the students ($x 2=1$), a one-year increase in age yields a change in log odds of $(2.5-2.4)=0.1$.

So for a student moving from
30 years old to 40 years old the odds of having cash increase from
$\exp (-92.3+89.8) * \exp ((2.5-2.4) * 30)=1.65$ to
$\exp (-92.3+89.8) * \exp ((2.5-2.4) * 40)=4.48$
$\operatorname{Pr}(30$ y.o. student has cash $)=$ $1.65 /(1+1.65)=64 \%$
$\operatorname{Pr}(40$ y.o. student has cash $)=$ $4.48 /(1+4.48)=83 \%$

(small differences are due to rounding.)

