Stat 306:

Finding Relationships in Data.

Lecture 16
Sections 4.3



Chapter 4 — Variable selection
and additional diagnostics

4.1 Variable Selection algorithms

4.2 Cross-validation and out-of sample assessment
4.3 Additional diagnostics

4.4 Transforms and nonlinearity

4.5 Diagnostics for data collected sequentially in time



In today’s lecture:

* Leave-one-out cross validation from last lecture

e Start with a question about residuals.

e Abruptly change topics to discuss “Influence”

* Change topics again to talk about the “Hat” matrix

* Go back to Influence with the Hat matrix

* Then ... | tell you the truth about residuals!

* Now that you know the truth, what should you do?

* Answer our simple question about residuals from the beginning.

* How does this help us understand NYT article on researhc for gun violence?

e BONUS: all this was useful for Leave-one-out cross validation
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Complete

Data

2 25 2 2

For each model, we do 5-fold CV:

Fald 1 Fold 2 Foldd 3 Fold 4 Fold 5
- Training Training Training Training
Training Iesf | Training Training Training
Training Training - Training Training
Training Training Training Training

Training Training Training Training 'I'est

Prediction Statistics

Metric:

Mean
Absolute
Prediction
Error:

K-averaged metric =40/5=8

Source: http://blog.goldenhelix.com/goldenadmin/cross-validation-for-genomic-prediction-in-svs/



Goal is
Prediction

4.2 Leave-one-out

Leave-one-out
Sample of size n, (yi,Ti1,...,Zip), ¢ = 1,...,n.
Fori=1,...,n, delete the ith observation (ith row of data set) and fit a regression with n — 1 observations/cases.
Let the least squares regression vector be denoted as B_,. Let x! = (1,z;1,...,&ip) be ith row of the n x (p+1)

matrix X. The prediction of the i¢th response based on the remaining observations is ;_; = xf@_i, and the
prediction error is y; — Jj;)—;-

The cross-validated root mean square (prediction) error is:

CVRMSEleaveoneout (371, <o 7xp) = n—1 Z(yz - @i|—i)2 .
=1

CV RM S Ejeaveoncout(Xs) can be defined for different subsets of the explanatory variables. [x; = (z; : j € J)=

variables indexed by set J]




What is an outlier?
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What is an outlier?

How big is a “big residual”?

e; ~ Normal(0, o?)

So maybe we could say that a big residual is...

8°>26
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Hat matrix (aka Projection matrix)

A Tx) 15T
B = (X X) X'y,
so the fitted values are
. A —1
y=XB=XX"X) X'y.
Therefore, the projection matrix (and hat matrix) is given by

P=X(X"X) "X



Hat matrix (aka Projection matrix)

A Tx) 15T
B = (X X) X'y,
so the fitted values are
. ~ —1
y=XB=XX"X) X'y.
Therefore, the projection matrix (and hat matrix) is given by

P=X(X"X) "X

Therefore: S’ = Py
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[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]

>

> mod<-1m(y~x1)

Hat matrix (aka Projection matrix)

P=X(X"X) X

62
42

24
27

X<-cbind(1,x1)

P<-X%*%solve(t(XD%*%X)%*%t(X)
P%*%y

[,1]

.61099
.33057
56.
29.
33.
22.

58167
72382
56066
59827

.24263
.53134
30.

82006

> mod$fitted

1

Therefore:

x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24)
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10)
n <- 9
p<-1
k<-2

5 6

62.61099 42.33057 56.58167 29.72382 33.56006 22.59827

24.24263 27.53134 30.82000

7



Hat diagonal

The hat diagonal, P,;, is a good measure of how much influence
the ith observation has on the fitted model.
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How BiG?
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The hat diagonal, P;;, is a good measure of how much influence
the ith observation has on the fitted model.

Big value of P, suggests that the ith observation is very influential.

How BiG?

Note that: mn
> i1 Pii =k




Hat diagonal

The hat diagonal, P;;, is a good measure of how much influence
the ith observation has on the fitted model.

Big value of P, suggests that the ith observation is very influential.

How BiG?

Note that: n L
y:i—l Py =k

Therefore, the “average Pii” is equal to k/n. So think about “BiG” relative to average.
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R code:

x<-(rnorm(60,0,5)+12)
y<-18+0.1*x+rnorm(60,0,8)

y[61]<-55
X[61]<-28

# Make the scatterplot:

plot(x,y, pch=20, col="darkblue", cex=2, axes=TRUE,ylim=c(0,100),
xlim=c(0,100), xlab="x", ylab="y")

abline(Im(y~x))

X<-cbind(1,x)
P<-X%*%solve(t(X)%*%X)%*%t(X)
diag(P)

round(diag(P),2)

k<-2

n<-61

k/n
mean(diag(P))



Remember three things:

Outliers are not necessarily influential (depends on leverage)
High leverage observations are not necessarily influential (is it an outlier?)

Influential points are not necessarily outliers
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High leverage observations are not necessarily
influential (is it an outlier?)
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Influential points are not necessarily outliers
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Also REMEMBER THAT:

HAT DIAGONALS INDICATE the POTENTIAL FOR BEING INFLUTENTIAL.



Variance of residuals is not equal!

The variances of the residuals at different X variable values may differ,
even if the variances of the errors at these different input variable values are equal.

Remember that there is a difference between errors and residuals:

The model: y; = Bg + frz; +¢; ,i=1,...,n
The fitted model: 1; = ﬁAo + 81332- +é€¢ ,1=1,....,.n
errors: €;

residuals: €;
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Remember that there is a difference between errors and residuals:

The model: y; = By + f1z; +¢; ,i=1,...,n
The fitted model: 1; = ﬁo -+ lei +é€ ,it=1,....,n
errors: €; ~ Normal(0,0?)

residuals: €; ~ 777



Variance of residuals is not equal!

The variances of the residuals at different X variable values may differ,
even if the variances of the errors at these different input variable values are equal.

Remember that there is a difference between errors and residuals:

The model: y; = Bo + Bi1x; +€ 1=

The fitted model: 1; = BO + lei + €;
errors: €; ~ Normal(0,0?)

residuals: €; ~ 777



Variance of residuals is not equal!

The variances of the residuals at different X variable values may differ,
even if the variances of the errors at these different input variable values are equal.

Remember that there is a difference between errors and residuals:

The model: y; = 8o+ Bixi +¢; ,i1=1,...,n
The fitted model: 1; = BO + ,815132' +¢€¢ ,1=1,...,n
errors: €; ~ Normal(0,c?)

residuals: & ~ Normal(0,02%(1 — Py;))



Variance of residuals is not equal!

Variance-Covariance Matrix of the residuals:

( 1—hn —h12 —hi3

—ho1 1—hga  —hos

Var(é) =7

K _h'nl _hn2 _hnB




What does this mean for our residual diagnostic plots?



Residual plot (homoscedasticity)

Residual
A

& ¢ .' . » ® o %L o Regression
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Goe, ® @ % value




Residual plot (homoscedasticity)

Residual
A
i / —
® o% o L, ° .‘0 ® Regression
.Q o @ @ @ ;
So *—% ¥ » predicted
Goe, ® @ % value
— ¢ -




variance_of residuals<-(summary(Im(y~x))Ssigma”2)*(1-diag(P))
plot(variance_of_residuals~x)

plot(Im(y~x)Sresiduals)
plot(Im(y~x)Sresiduals/sqrt(variance_of_residuals))
Im(y~x)Sresiduals/sqrt(variance_of residuals)

|s.diag(Im(y~x))Sstd.res



What does this mean for our residual diagnostic plots?

Maybe we should adjust the residuals before plotting them...



Output of 1s.diag() in R [diagnostics after Isfit or Im].

See Section 4.3 for full details.

An observation (row of data matrix) is influential if the value of B changes a lot when this observation is
deleted. First pass through these notes: influential observations

only, as ideas are related to cross-validation with leave-one-out.

[1] "std.dev" "hat" "std.res" '"stud.res" "cooks"

[6] "dfits" "correlation" '"std.err" ‘'cov.scaled" "cov.unscaled"

n =sample size, X=data matrix of explanatory variables of dimension n X k with first column of 1s for the

intercept.




1. std.dev: residualSD = 6 = /) _.e?/(n — k)



1. std.dev: residualSD = 6 = /) _.e?/(n — k)

2. hat: diagonal of projection or hat matrix P = X (X7 X)~1X”, ith diagonal element denoted as P;;.



1. std.dev: residualSD = &

2 —
V2o €/(n—k)
2. hat: diagonal of projection or hat matrix P = X(X7X)~1X7”, ith diagonal element denoted as P;;.

3. std.res: vector of standardized residuals: e} =e;/[6v/1 — Py;]

standardized residuals:
these are residuals normalized to unit variance.

these are residuals divided by their standard error.



1. std.dev: residualSD = 6 = /) _.e?/(n — k)

2. hat: diagonal of projection or hat matrix P = X (X7 X)~1X”, ith diagonal element denoted as P;;.

3. std.res: vector of standardized residuals: e} =e;/[6v/1 — Py;]

standardized residuals:
these are residuals normalized to unit variance.

these are residuals divided by their standard error.

> mod$residuals/(summary(mod)$sigma*sqrt(1-diag(P)))



1. std.dev: residualSD = 6 = /) _.e?/(n — k)

2. hat: diagonal of projection or hat matrix P = X (X7 X)~1X”, ith diagonal element denoted as P;;.

3. std.res: vector of standardized residuals: e} =e;/[6v/1 — Py;]



1. std.dev: residualSD = 6 = /) _.e?/(n — k)

2. hat: diagonal of projection or hat matrix P = X (X7 X)~1X”, ith diagonal element denoted as P;;.

3. std.res: vector of standardized residuals: e} =e;/[6v/1 — Py;]

4. stud.res: vector of Studentized residuals

studentized residuals:
these are residuals normalized to unit variance...

where the estimate of the variance is done
without the it" observation.
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4. stud.res: vector of Studentized residuals

studentized residuals:
these are residuals normalized to unit variance...

where the estimate of the variance is done
without the it" observation.

s_without_i <- rep(@,length(y))

for(i in 1l:length(y)){
s_without_i[1] <- summary(lm(y[-i]~x1[-1i]))$sigma
}

studentized_residuals<-mod$residuals/(s_without_i*sqrt(1-diag(P)))



4. stud.res: vector of Studentized residuals

studentized residuals:
these are residuals normalized to unit variance...

where the estimate of the variance is done
without the it" observation.

The “estimate of the variance is done without the it" observation” can
be done more easily:




So many kinds of residuals!!!

The difference between standardized and studentized
residuals is often very small or even negligible.

The difference between the two will depend on the
amount of influence of the observation has on the model fit.



-~

5. cooks: Cook's distance = vector of inverse-covariance-matrix weighted squared distances of 3_, — 3 to
measure influence of the observations:

B_,-B)TX"X(B_,-B8) (e)? Py

j. A o ) X y ?
ko2 k 1 - P

D; =

-~

3_, is the vector of regression coeflicients with (x;,y;) omitted. D, is a distance measure that is invariant

to scaling of explanatory variables; also other invariances.
where:

e; = ei/lov1— Py

BASIC IDEA:

“Cook’s distance is the sum of all the changes in the fitted values of a
regression model when the it" observation is removed from the data”



~

6. dfits: Another measure of influence of the ith observation: dfits; = (7 — 9;—:)/[6—iV/ Pii |

7. correlation: V = (X7X)~! converted to a correlation matrix, that is, v;; = v;;//0i0;; -



6. dfits: Another measure of influence of the ith observation: dfits; = (7 — 9;—:)/6—ivV/ Pii |

7. correlation: V = (X7X)~! converted to a correlation matrix, that is, v;; = v;;//0i0;; -

8. std.err: vector of SEs of the §; or the square roots of the diagonal of 52(X7X)".

9. cov.scaled: 62(X7X)~! = estimated covariance matrix of 3.

10. cov.unscaled: (X¥X)™!



What is an outlier?

How big is a “big residual”?

residuals: € ~ Normal(0, 02(1 — Py))

So to answer our question we should calculate Studentized or Standardized residuals.
A Rule of Thumb is that a Studentized or Standardized residual:
- larger than 2 is BIG (“outlying”) and

- larger than 3 is VERY BIG (“outlier”, you should check to make sure there is not a mistake)
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Figure 2. Studentized Residual Predicted vs Observed Funding and Publication Volumes for 30 Leading Causes
of Death in the United States

2_
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BONUS FOR LEAVE-ONE-OUT Cross Validation

The cross-validated root mean square (prediction) error is:

(426) CV RM S Ejeaveoneout (331, ceeyIp) = \l -1 Z yl|

CV RM S Ejeaveoncout (X7) can be also defined for the subset of the explanatory variables indexed by J C

{1,...,p}.



BONUS FOR LEAVE-ONE-OUT Cross Validation

The cross-validated root mean square (prediction) error is:

(426) CV RM S Ejeaveoneout (ml, ey Tp) = n—1 Z y2|_z

CV RM S Ejeaveoncout (X7) can be also defined for the subset of the explanatory variables indexed by J C

{1,...,p}.
It turns out there is a simple formula for cross-validation leave-one-out residuals (without having to

compute n different regressions). An identity is

(4.27) Yi — gil—i = (yi — 9:)/(1 = Py;), Pii=x; (XTX) Xis

where x)

X(XTX)~1XT. See Section 4.3 for why this quantity is called the projection matrix.

= (1,zi1,...,%ip). Alternatively, P;; is the ith diagonal element of the projection matrix P =



