Stat 306:

Finding Relationships in Data. Lecture 14
Section 3.13 Summary for multiple regression

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
H_{0}: \beta_{1}=0
$$

$$
H_{1}: \beta_{1} \neq 0
$$

Sample, $n=9$

Sample statistics		χ	y
$\mathrm{b}_{0}=17.7$		82	71
$b_{1}=0.55$	\bigcirc	45	54
$\mathrm{s}=15.5$	R	45	4
$\mathrm{R}^{2}=0.49$		71	43
	i	22	45
For parameter β_{1}	T	29	21 11
95\% C.I. $=[0.05,1.05]$	$\stackrel{+}{1}$	12	30
p-value $=0.036$	T	18	45
	,	24	10

Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

$b_{0}=17.7$
$b_{1}=0.55$
$\mathrm{s}=15.5$
$R^{2}=0.49$

Results: We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of \$0.55 (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.

2.1.2 Sample statistics

- Correlation is Positive when the values increase together, and
- Correlation is Negative when one value decreases as the other increases

Here we look at linear correlations (correlations that follow a line).

Correlation can have a value:

- 1 is a perfect positive correlation
- O is no correlation (the values don't seem linked at all)
- -1 is a perfect negative correlation

2.1.2 Sample statistics

To summarize the linear association, the sample correlation is

$$
r_{x y}=\frac{s_{x y}}{s_{x} s_{y}}
$$

where sample covariance is

$$
s_{x y}=(n-1)^{-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

2.1.3 Least squares solution

2.1.3 Least squares solution

The goal is to minimize $S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-b_{0}-b_{1} x_{i}\right)^{2}$.
Set the equations to 0 , divide by -2 and solve.
The solution $\left(\hat{b}_{0}, \hat{b}_{1}\right)$ satisfies

$$
\begin{aligned}
& 0=n\left[\bar{y}-\hat{b}_{0}-\hat{b}_{1} \bar{x}\right] \\
& 0=\sum_{i=1}^{n} x_{i} y_{i}-\hat{b}_{0} n \bar{x}-\hat{b}_{1} \sum_{i=1}^{n} x_{i}^{2}
\end{aligned}
$$

3.8 Residual Plots

(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value

Residual plot (homoscedasticity)

Residual

(a)

Residual plot (heteroscedasticity)
Residual

(b)

3.8 Residual Plots

(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value

Section 2.2 - Statistical linear regression model

Step 0:
From θ, define estimator, $\hat{\theta}$

Step 1:

Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$

```
Step 3:
Define \(\operatorname{se}(\hat{\theta})=\)
estimate of \(\sqrt{\operatorname{Var}(\hat{\Theta})}\)
```

Step 4:
Define
$(1-\alpha) \%$ C.I. $=$
$\hat{\theta} \pm c \times s e(\hat{\theta})$

Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β_{0}	$\mathrm{~b}_{0}$	$\mathrm{~B}_{0}$	$\mathrm{E}\left[\mathrm{B}_{0}\right]$	$\operatorname{Var}\left[\mathrm{B}_{0}\right]$	se(b $\left.\mathrm{b}_{0}\right)$	C.I. for β_{0}
β_{1}	$\mathrm{~b}_{1}$	$\mathrm{~B}_{1}$	$\mathrm{E}\left[\mathrm{B}_{1}\right]$	$\operatorname{Var}\left[\mathrm{B}_{1}\right]$	$\operatorname{se}\left(\mathrm{b}_{1}\right)$	C.I. for β_{1}
σ^{2}	$\mathrm{~s}^{2}$	$\mathrm{~s}^{2}$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$\operatorname{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
$\mu_{Y}(x)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$	$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{C} . \mathrm{I}$. $\mu_{Y}(x)$

2.5 For simple linear regression $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1, \ldots, n$, where ϵ_{i} are independent $N\left(0, \sigma^{2}\right)$ random variables, the variance of the estimate of the subpopulation mean as a function of x^{*} is

$$
\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]=\operatorname{Var}\left[\hat{B}_{0}+\hat{B}_{1} x^{*}\right]=\sigma^{2}\left\{n^{-1}+\frac{\left(x^{*}-\bar{x}\right)^{2}}{\left[(n-1) s_{x}^{2}\right]}\right\} .
$$

(a) For what value of x^{*} is $\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ minimized?
(b) For what value of x^{*} is $\operatorname{Var}\left[\hat{\mu}_{Y}\left(x^{*}\right)\right]$ maximized?
(c) Interpret the result in (b).

2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_{0}: \beta_{1}=0$. (2.76) implies that the null distribution of $\hat{B}_{1} / S E\left(\hat{B}_{1}\right)$ is t_{n-2}. For the data version, $\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)$ is the standardized version of $\hat{\beta}_{1}$; it is invariant to scale changes of the x and y variables (because a scale change affect the SE in the same way as $\left.\hat{\beta}_{1}\right) .\left|\hat{\beta}_{1} / \operatorname{se}\left(\hat{\beta}_{1}\right)\right|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

Hypothesis Test
$\mathrm{H}_{0}: \beta_{1}=0$ र $H_{1}: \beta_{1} \neq 0$

We have:

$$
\frac{B_{1}-\beta_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

Therefore, "under the null", we have:

Two-sided p-value:

2*(1-pt(abs(tstat), n-k))

One-sided p-value:
1-pt(tstat, n-k)

$$
\frac{B_{1}}{S E\left(B_{1}\right)} \sim t_{n-2}
$$

3.1 Least squares with two or more explanatory variables

"hyperplane equation"

3.1 Least squares with two or more explanatory variables

design matrix or data matrix

$$
\mathbf{X}=\left(\begin{array}{cccc}
1 & x_{11} & \cdots & x_{1 p} \tag{3.18}\\
1 & x_{21} & \cdots & x_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{i 1} & \cdots & x_{i p} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & \cdots & x_{n p}
\end{array}\right), \quad \hat{\mathbf{b}}=\left(\begin{array}{c}
\hat{b}_{0} \\
\hat{b}_{1} \\
\vdots \\
\hat{b}_{p}
\end{array}\right)
$$

$$
\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\mathbf{b}}=\mathbf{X}^{T} \mathbf{y}
$$

$$
\text { or } \quad \hat{\mathbf{b}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

The system of normal equations

3.6 Interval estimates and standard errors

Step 0: From θ, defin estimator, $\hat{\theta}$	Step 1: Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$		2: termine $\hat{\Theta}]$ (to confirm it's unbiased [$\hat{\theta}]$ (to calculate se)	Step 3: Define $\operatorname{se}(\hat{\theta})=$ estimate of $\sqrt{\operatorname{Var}(\hat{\Theta})}$		p 4 : fine) $\%$ C.I. $=$ $=c \times s e(\hat{\theta})$
Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval
β	b $=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$	$\begin{aligned} & \mathbf{B} \sim \\ & \mathbf{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right) \end{aligned}$	$E[b]=\boldsymbol{\beta} 3$.	$\begin{aligned} & \operatorname{Var}[\mathbf{B}] \\ & =\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \end{aligned}$	$\begin{aligned} & \operatorname{se}(\mathbf{b}) \\ & =\hat{\sigma} \sqrt{\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right]_{j j}} \end{aligned}$	C.I. for $\boldsymbol{\beta} 6$.
σ^{2}	$\mathrm{s}^{\mathbf{2}}$ or MS(Res) 1.	S^{2} $2 .$	$\mathrm{E}\left[\mathrm{S}^{2}\right]$	$\operatorname{Var}\left[\mathrm{S}^{2}\right]$	$\mathrm{se}\left(\mathrm{s}^{2}\right)$	C.I. for σ^{2}
$\mu_{Y(\mathbf{x})}$	$\left(\hat{\mu}_{Y}(x)\right)$	$\left(\hat{\mu}_{Y}(x)\right)$	$\mathrm{E}\left(\hat{\mu}_{Y}(x)\right)$ 3.	$\operatorname{Var}\left(\hat{\mu}_{Y}(x)\right)$ $\begin{equation*} 4 . \tag{5.} \end{equation*}$	$\operatorname{se}\left(\hat{\mu}_{Y}(x)\right)$	C.I. for $\mu_{Y}(x)$ 6.

3.9 Categorical explanatory variables

3.9 Categorical explanatory variables

Consider two hypothesis tests, and recall that:
$\operatorname{Var}(\mathrm{A}-\mathrm{B})=\operatorname{Var}(\mathrm{A})+\operatorname{Var}(\mathrm{B})-2 \operatorname{Cov}(\mathrm{~A}, \mathrm{~B})$

Test 1:
$\xrightarrow{\mathrm{H}_{0}} \underset{\Rightarrow}{\Rightarrow} \mu_{\text {France }}=\mu_{\text {England }}$
$\mathrm{H}_{0}: \beta_{1}=0$
t-stat $=b_{1} / S E\left(b_{1}\right)$

$$
=5.53
$$

Therefore:
$\begin{aligned} \mathrm{p} \text {-value } & =2^{*}(1-\mathrm{pt}(\operatorname{abs}(5.53), \mathrm{n}-\mathrm{k})) \\ & <0.0001\end{aligned}$

Test 2:
$\underset{\Rightarrow}{H_{0}}: \mu_{\text {France }}=\mu_{\text {Thailand }}$

$$
H_{0}: \beta_{1}-\beta_{2}=0
$$

t-stat $=\left(b_{1}-b_{2}\right) / \mathrm{SE}\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right)$

$$
=-3.798
$$

Therefore:

$$
\begin{aligned}
p \text {-value } & =2^{*}(1-p t(a b s(-3.798), n-k)) \\
& =0.002
\end{aligned}
$$

3.4 Statistical software output for multiple regression

- Total sum of squares for y about its mean, or numerator of sample variance of y :

$$
\begin{equation*}
S S(\text { Total })=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=(n-1) s_{y}^{2} . \quad \text { \% of Total variance explained } \tag{3.44}
\end{equation*}
$$

- Multiple correlation coefficient or coefficient of determination :

$$
\begin{align*}
R^{2} & \stackrel{\text { def }}{=} 1-\frac{S S(\text { Res })}{S S(\text { Total })}, \tag{3.45}\\
\operatorname{adj} R^{2} & \stackrel{\text { def }}{=} 1-\frac{S S(\text { Res }) /(n-k)}{S S(\text { Total }) /(n-1)}=1-\frac{\hat{\sigma}^{2}}{s_{y}^{2}} \tag{3.46}
\end{align*}
$$

\% of Total variance explained with penalty for number of parameters
R^{2} measures the proportion of total variation in the y-variable about \bar{y} explained by the regression; a better fitting regression model leads to a smaller value of $S S($ Res $)$ and larger value of R^{2}. The adjusted R^{2} makes an adjustment to R^{2} so that it is not always increasing with additional explanatory variables. Note that $R^{2} \geq 0$ but adj R^{2} could be a little negative when the model is a bad fit.

3.4 Statistical software output for multiple regression

Although (3.45) is a mathematical definition of R^{2}, there are alternative forms that give useful interpretations. R^{2} is also the square of a correlation coefficient in the following senses.

1. R^{2} is the sample squared correlation of \hat{y}_{i} and y_{i}, that is,

$$
\begin{equation*}
R^{2}=\frac{\left\{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\overline{\hat{y}}\right)\right\}^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \cdot \sum_{i=1}^{n}\left(\hat{y}_{i}-\hat{\hat{y}}\right)^{2}}, \tag{3.58}
\end{equation*}
$$

where $\overline{\hat{y}}=n^{-1} \sum_{i=1}^{n} \hat{y}_{i}$.
2. $R_{y ;\left(x_{1}, \ldots, x_{p}\right)}$ is the maximum correlation between $\left\{y_{i}\right\}$ and $\left\{b_{1} x_{i 1}+\cdots+b_{p} x_{i p}\right\}$ over choices of $\left(b_{1}, \ldots, b_{p}\right)$. That is, $\left\{\hat{\beta}_{1} x_{i 1}+\cdots+\hat{\beta}_{p} x_{i p}\right\}$ has maximum correlation with $\left\{y_{i}\right\}$, where $\hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$ are the least squares coefficients.

$$
R^{2}=\left(r_{\hat{y}, y}\right)^{2}
$$

R^{2} is the squared sample correlation, between $\quad \hat{y}_{i}$ and y_{i}
R^{2} is the squared sample correlation, between $\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}$ and y_{i}
R^{2} is the squared sample correlation, between x_{i} and y_{i}

Changed?	Location shift to X_{1}	Scale change to X_{1}
$\mathrm{~b}_{1}$	X	
SE($\left.b_{1}\right)$	X	
Confidence Interval for β_{1}	X	
p-value $\mathrm{H}_{0}: \beta_{1}=0$	X	X
MS(Res)	X	X
R-squared	X	X
Adjusted R-squared	X	X
F-test	X	X

Changed?	Location shift to X_{1}	Scale change to X_{1}
b_{0}	\checkmark	X
SE(b_{0})	\checkmark	X
Confidence Interval for β_{0}	\checkmark	X
p-value $H_{0}: \beta_{0}=0$	\checkmark	X

Model:

$$
Y=\beta_{0}+\beta_{1} X_{1}
$$

The art of linear regression

- Categorical predictors
- Quadratic (polynomial) relationships
- Outliers
- How to fix heterogeneity
- Regression to the mean
- Simpsons Paradox
- Unobserved Confounding

The Burnaby Condominium Data

Goal: Better understand which factors are associated with the price of condominiums.

Table 1.1: Variables obtained from www.realty.org for Burnaby condominiums that were listed for sale.

Variable	description
MLS	identification code for multiple listing service
askprice	asking price
ffarea	finished floor area (in sqft, $1 \mathrm{sq} \mathrm{m}=10.76 \mathrm{sqft})$
bedrooms	number of bedrooms
baths	number of bathrooms (1/2 bathroom means no bathtub)
floor	floor of the property
view	1 if property advertised as having a good view and view $=0$ otherwise
age	number of years old for the property
mfee	monthly maintenance fee
region	region of the city

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

```
> dat<-read.csv("~/Desktop/UBC/STAT306/burnaby_condos.csv", row.names=NULL)
> head(dat)
    MLS askprice ffarea beds baths floor view age mfee region
1 R2100519 \(23800067511.5 \quad 2 \quad 0 \quad 40 \quad 317\) sullivanheights
2 R2100994 2780006731 \begin{tabular}{lllllll} 
& 62 & 1.5 & 22 & 1 & 40 & 317 \\
sullivanheights
\end{tabular}
3 R2103579 \(294800 \quad 740 \quad 1 \quad 1.5 \quad 17 \quad 0 \quad 39 \quad 300\) sullivanheights
4 R2099070 \(2990001050 \quad 3 \quad 1.5 \quad 2 \quad 0 \quad 37507\) sfu
\begin{tabular}{llllllllll}
5 & R2122546 & 318000 & 556 & 1 & 1.5 & 5 & 1 & 11 & 216 \\
sfu
\end{tabular}
\begin{tabular}{llllllllll}
6 & R2122884 & 329000 & 663 & 1 & 1.5 & 1 & 0 & 18 & 204
\end{tabular} edmonds
> dim(dat)
[1] 63 10
>
```


The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

Some variables in Table 1.1 were scaled (to avoid small coefficients in prediction equation), in particular from the data shown in Table 1.2, transforms are the following:

- askprice \rightarrow askprice/ 1000ϕ
- ffarea \rightarrow ffarea/ 100
- mfee \rightarrow mfee/ 10
> dat\$askprice<-dat\$askprice/1000
> dat\$ffarea<-dat\$ffarea/100
> dat\$mfee<-dat\$mfee/10
$>$

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

Is this observational data or experimental data?

What are the implications?

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.
What is the simplest linear regression model?

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

The simplest linear regression model:

$$
y_{i}=\beta_{0}+\varepsilon_{i}, \text { with } \varepsilon_{i} \text { iid Normal }
$$

This is the intercept only model.

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

$$
y_{i}=\beta_{0}+\varepsilon_{i} \quad \text { Intercept only model. }
$$

> summary(lm(askprice~1, data=dat))
Call:
lm(formula = askprice \sim 1, data $=$ dat)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-328.30	-143.30	-47.41	97.20	901.70

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $566.30 \quad 28.43 \quad 19.92 \quad<2 e-16$ ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 ‘' 1
Residual standard error: 225.7 on 62 degrees of freedom

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

$$
y_{i}=\beta_{0}+\varepsilon_{i} \quad \text { Intercept only model. }
$$

What questions can we answer with this model?

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

$$
y_{i}=\beta_{0}+\varepsilon_{i} \quad \text { Intercept only model. }
$$

What questions can we answer with this model?
Question: What is the average cost of a condominium in Burnaby?

Answer: Our estimate β_{0}.
$\hat{\beta}_{0}=566.30 \quad \begin{aligned} & \text { > confint(lm(askprice } \sim 1, \text { data=dat)) } \\ & 2.5 \% 99.5 \% \\ & \text { (Intercept) } 509.470663 .1348\end{aligned}$

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

$$
y_{i}=\beta_{0}+\varepsilon_{i} \quad \text { Intercept only model. }
$$

What questions can we answer with this model?
Question: Is the average cost of a condominium in Burnaby above half a million dollars?

Answer: $\mathrm{H}_{0}: \beta_{0}>50$
> tstat<-(566.30-500)/28.43
> tstat
[1] 2.332044
> t.test(dat\$askprice, mu=500, alternative="greater")

One Sample t-test

```
data: dat$askprice
```

$\mathrm{t}=2.3321, \mathrm{df}=62, \mathrm{p}$-value $=0.01148$
alternative hypothesis: true mean is greater than 500
95 percent confidence interval:
518.829 Inf
sample estimates:
mean of x
566.3027

What questions can we answer with this model?
Question: Is the average cost of a condominium in Burnaby above half a million dollars?

Answer: $\mathrm{H}_{0}: \beta_{0}>50$

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.
What is the next simplest linear regression model?

The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.
What is the next simplest linear regression model?
We consider the region of the condominium.
There are 9 different regions.
What will be the reference category?
$\mathrm{k}=$?

The Burnaby Condominium Data

The Burnaby Condominium Data

> summary(lm(askprice~region,data=dat))
Call:
lm(formula $=$ askprice \sim region, data $=$ dat $)$
What questions can we answer with this model?
Question: Is the average price of condos different in different regions?

Answer: F-test.

The Burnaby Condominium Data

> summary(lm(askprice~region,data=dat))
Call:
lm(formula $=$ askprice \sim region, data $=$ dat)

What questions can we answer with this model?

Question: Are condos in the region of Government Road the same price (on average) as condos in the region of Brentwood Park?

Answer: $H_{0}: \beta_{3}=0$

The Burnaby Condominium Data

> summary(lm(askprice~region,data=dat))
Call:
lm(formula $=$ askprice \sim region, data $=$ dat)

What questions can we answer with this model?

Question: Are condos in the region of Government Road the price (on average) as condos in the region of Metrotown ?

Answer: $\mathrm{H}_{0}: \beta_{3}-\beta_{5}=0$

The Burnaby Condominium Data

> summary(lm(askprice~region,data=dat))
Call:
lm(formula $=$ askprice \sim region, data $=$ dat $)$
What questions can we answer with this model?

However, recall that this is observational data.
Therefore...

The Burnaby Condominium Data

Suppose we add finished floor area to the model.

What questions can we answer with this model?

The Burnaby Condominium Data

Suppose we add finished floor area to the model.

What questions can we answer with this model?
Question: Are condos in the region of Government Road the same price (on average) as condos in the region of Brentwood Park, adjusted for size?

Answer: $\mathrm{H}_{0}: \beta_{3}=0$

The Burnaby Condominium Data

Suppose we add number of bedrooms to the model.

The Burnaby Condominium Data

Suppose we add number of bathrooms to the model.

