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Lecture	14	
Sec1on	3.13	Summary	for	mul1ple	regression		

	



Age	vs.	Money	

Popula'on	

dollars	($)	
In	bank	account	

Popula1on	
parameters	

Hypothesis	Test	
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β0	,	 σ2				β1	,	
	

H0	:	β1	=	0	
H1	:	β1	≠	0	
	

82	

22	

45	
71	

29	

12	
9	

18	
24	

X       y 

71	
	

54	
	

43	
	
45	
21	
11	
	
30	
45	
10	
	

Age	in	
Years		

PREDICTOR variable 

 X 

RESPONSE variable 

       Y 

b0			=		17.7	
b1			=		0.55	
s					=		15.5	
R2				=		0.49	
	

For	parameter	β1	:		



Age	vs.	Money	
Objec've:		 	The	purpose	of	this	observa1onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	money.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	money	(in	dollars)	in	their	accounts.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	money.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		
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heps://www.mathsisfun.com/data/correla1on.html	

Guess	the	Correla'on	Game:			hEp://guessthecorrela'on.com/	

2.1.2	Sample	sta1s1cs	



2.1.2	Sample	sta1s1cs	



b0
b1

SS(b0,b1)

2.1.3	Least	squares	solu1on	



2.1.3	Least	squares	solu1on	



3.8	Residual	Plots	
(1)	Plot	of	residuals	versus	predicted	values.	
(2)	Plot	of	residuals	versus	explanatory	value	

0	



3.8	Residual	Plots	
(1)	Plot	of	residuals	versus	predicted	values.	
(2)	Plot	of	residuals	versus	explanatory	value	



Sec'on	2.2	-	Sta1s1cal	linear	regression	model		
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Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

β0	 b0	 B0	 E[B0]	 Var[B0]	
	

se(b0)	 C.I.	for	β0	

β1	 b1	 B1	 E[B1]	 Var[B1]	 se(b1)	 C.I.	for	β1	

σ2				
	

s2	 S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	
	

E	 Var	 C.I.	for	
	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

β0	 b0	 B0	

β1	 b1	 B1	

σ2				
	

s2	 S2	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

		

We	have	that:	

And	again,	a	linear	combina1on		
	of	normal	random	variables	is	a	normal	
	random	variable	(Thing	1):	





Hypothesis	Test	
H0	:	β1	=	0	
H1	:	β1	≠	0	

We	have:	

“Null” hyAothesis 

“AlterFative” hyAothesis 

=	0	

Therefore,	“under	the	null”,	we	have:	

2.6.4	Explana'on	of	Student	t	quan'les	

Two-sided	p-value:	
	
2*(1-pt(abs(tstat),n-k))	
	
One-sided	p-value:	
	
	1-pt(tstat,	n-k)	



3.1	Least	squares	with	two	or	more	
explanatory	variables	

	
“hyperplane	equa'on”	



heps://commons.wikimedia.org/wiki/File:2d_mul1ple_linear_regression.gif	



3.1	Least	squares	with	two	or	more	
explanatory	variables	

	
design	matrix	or	data	matrix		

The	system	of	normal	equa5ons	



Popula'on	
parameter		
or	“something	
we	would	like	to	
es'mate”	

Sample	
sta's'c	
(“es'mator”)	

Es'mator	as	
a	Random	
Variable	

Expected	
Value	of	the	
es'mator	

Variance		
of	the	
es'mator	

Standard	
Error	of	
es'mator	

Confidence	
Interval	

β	 b	 B	~		
N(β,															)	

E[b]	=	β	 Var[B]	
	

se(b)	 C.I.	for	β	

σ2	 s2	or	MS(Res)	
	

S2	 E[S2]	 Var[S2]	 se(s2)	 C.I.	for	σ2	

							(x)	
	

E	 Var	 C.I.	for	

Step	0:	
From	θ,	define	
es1mator,		

Step	1:	
Consider	the	sample		
sta1s1c,				,	as	a		
random	variable		

Step	2:	
Determine		
E[				]		(to	confirm	it’s	unbiased)	

Var[				]	(to	calculate	se)	

		

Step	3:	
Define	
se(					)	=	
		
	

Step	4:	
Define	
(1-α)%	C.I.	=		
		
	

3.6	Interval	es1mates	and	standard	
errors	

1.	 2.	 3.	 4.	 5.	 6.	

1.	 3.	2.	

1.	 2.	 3.	 4.	 5.	 6.	
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3.9	Categorical	explanatory	variables	
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3.9	Categorical	explanatory	variables	
Consider	two	hypothesis	tests,	and	recall	that:	
Var(A	–	B)	=	Var(A)	+	Var(B)	–	2Cov(A,B)	

Test	1:	

H0:	μFrance	=	μEngland	
⇒		
H0:	β1	=	0	

Test	2:	

H0:	μFrance	=	μThailand	
⇒		
H0:	β1	-	β2	=	0	
	
	t-stat	=	b1/SE(b1)	

	

	 	=	5.53	
	
Therefore:	
	
p-value	=	2*(1-pt(abs(5.53),	n-k))	

							<	0.0001	

t-stat	=	(b1-b2)/SE(b1-	b2)	
	

	 	=	-3.798	
	
Therefore:	
	
p-value	=	2*(1-pt(abs(-3.798),	n-k))	
		 							=	0.002	
	



	
3.4	Sta1s1cal	souware	output	for	

mul1ple	regression	
	

%	of	Total	variance	explained	

%	of	Total	variance	explained	
with	penalty	for	number	of	parameters	



	
3.4	Sta1s1cal	souware	output	for	

mul1ple	regression	
	

R2		is	the	squared	sample	correla1on,				between		

R2		is	the	squared	sample	correla1on,				between		

R2		is	the	squared	sample	correla1on,				between		



Changed?	 Loca'on	
shid	to	X1	

Scale	change	
to	X1	

b1	 ✗	 ✔	
SE(b1)	 ✗	 ✔	
Confidence	
Interval	
for	β1	

✗	 ✔	
p-value	
H0	:	β1	=	0	 ✗	 ✗	
MS(Res)	

✗	 ✗	
R-squared	
	 ✗	 ✗	
Adjusted		
R-squared	
	

✗	 ✗	
F-test	

✗	 ✗	

Changed?	 Loca'on	
shid	to	X1	

Scale	change	
to	X1	

b0	 ✔	 ✗	
SE(b0)	 ✔	 ✗	
Confidence	
Interval	
for	β0	

✔	 ✗	
p-value	
H0	:	β0	=	0	 ✔	 ✗	

Y	=		β0		+	β1	X1	
	

Model:	



•  Categorical	predictors	

•  Quadra1c	(polynomial)	rela1onships	
	
•  Outliers	

•  How	to	fix	heterogeneity	
	
•  Regression	to	the	mean	
	
•  Simpsons	Paradox	

•  Unobserved	Confounding	

The	art	of	linear	regression	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	which	factors	are	associated		
	 	with	the	price	of	condominiums.	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	

Is	this	observa1onal	data	or	experimental	data?	
	
What	are	the	implica1ons?	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	
	
What	is	the	simplest	linear	regression	model?	
	

		



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	
	
The	simplest	linear	regression	model:	
	

	 	yi	=	β0	+	εi			,		with	εi		iid	Normal	
	
This	is	the	intercept	only	model.	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	

	 	yi	=	β0	+	εi	 	 	 	Intercept	only	model.	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	

	 	yi	=	β0	+	εi	 	 	 	Intercept	only	model.	

What	ques1ons	can	we	answer	with	this	model?	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	

	 	yi	=	β0	+	εi	 	 	 	Intercept	only	model.	

	
	
Ques'on:	What	is	the	average	cost	of	a	condominium	in	Burnaby?	
	
Answer:	Our	es1mate	β0	.	

What	ques1ons	can	we	answer	with	this	model?	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	

	 	yi	=	β0	+	εi	 	 	 	Intercept	only	model.	

	
	
Ques'on:	Is	the	average	cost	of	a	condominium	in	Burnaby	above	half		

	 	 	a	million	dollars?	
	
Answer:		H0	:		β0	>	50	

What	ques1ons	can	we	answer	with	this	model?	



	
	
Ques'on:	Is	the	average	cost	of	a	condominium	in	Burnaby	above	half		

	 	 	a	million	dollars?	
	
Answer:		H0	:		β0	>	50	

What	ques1ons	can	we	answer	with	this	model?	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	
	
What	is	the	next	simplest	linear	regression	model?	



The	Burnaby	Condominium	Data	

Goal: 	Beeer	understand	the	price	of	Burnaby	condominiums.	
	
What	is	the	next	simplest	linear	regression	model?	

We	consider	the	region	of	the	condominium.			
There	are	9	different	regions.	
	
What	will	be	the	reference	category?	
	
k		=		?	
	
	



The	Burnaby	Condominium	Data	



The	Burnaby	Condominium	Data	

Ques'on:		Is	the	average	price	of	condos	different	in	different		
	 	 	regions?	

	

Answer:		F-test.	



The	Burnaby	Condominium	Data	

Ques'on:		Are	condos	in	the	region	of	Government	Road	the	 	
	 	 	same	price	(on	average)	as	condos	in	the	region	of	 	
	 	 	Brentwood	Park?	

	

Answer:		H0	:		β3		=	0	



The	Burnaby	Condominium	Data	

Ques'on:		Are	condos	in	the	region	of	Government	Road	the	 	
	 	 	price	(on	average)	as	condos	in	the	region	of	 	 	
	 	 	Metrotown	?	

	

Answer:		H0	:		β3		-	β5	=	0	



The	Burnaby	Condominium	Data	

	
However,	recall	that	this	is	observa1onal	data.	
Therefore…	



The	Burnaby	Condominium	Data	

Suppose	we	add	finished	floor	area	to	the	model.	



The	Burnaby	Condominium	Data	

Suppose	we	add	finished	floor	area	to	the	model.	

Ques'on:		Are	condos	in	the	region	of	Government	Road	the	 	
	 	 	same	price	(on	average)	as	condos	in	the	region	of	 	
	 	 	Brentwood	Park,	adjusted	for	size?	

	

Answer:		H0	:		β3		=	0	



The	Burnaby	Condominium	Data	

Suppose	we	add	number	of	bedrooms	to	the	model.	



The	Burnaby	Condominium	Data	

Suppose	we	add	number	of	bathrooms	to	the	model.	


