Stat 306:

Finding Relationships in Data.

Lecture 14
Section 3.13 Summary for multiple regression



Age vs. Money

A

PREDICTOR variable RESPONSE variable
: dollars (S)
Age in 5
X_) Yfars Y In bank account
lati Sample, n=9
POPU ation Population Sample statistics . X vy
parameters i b, = 17.7 lm N
Bo; Bll o b, = 0.55 : 45 54
s =155 w ° 43
| R? = 0.49 T
Hypothesis Test ; 2 ag
R = . 29 21
HO . Bl 0 For parameter B, : t 9 11
H:B,#20 95% C.I. = [0.05, 1.05] : 12 3
p-value = 0.036 g8 4
‘i 24 10




Objective:

Design and
Methods:

Results:

Conclusions:

Small Print:

Sample statistics

Age vs. Money

b, = 17.7
The purpose of this observational study was to b, = 0.55
demonstrate if, and to what extent, age is s =155
associated with money. RZ = 0.49

We collected a random sample of individuals and for each For parameter B, :
determine(?l their age.(reco.rded in years) and.the amount 05% C.I. = [().()5? 1.()5]
of money (in dollars) in their accounts. Analysis of alue 0.036
the data was done using linear regression. P-value = U.x
We obtained a random sample of n = 9 subjects. There is a

statistically significant association between age and money (p-value =0.036).

For every additional year in age, an individual’s amount of money increases

on average by an estimated of $0.55 (95% C.l. = [S0.05, $1.05]).

We found that, as hypothesized, age is associated with money.
In our sample age accounted for about half of the variability
observed in money (R?=0.49). We predict that a 50 year old will
have $45.1 (95% P.l. = [$5.6, $84.5]), whereas a 40 year

old will have $39.6 (95% P.I. = [S0.8, $78.4]).

The analysis rests on the following assumptions:

the observations are independently and identically distributed.

the response variable, money, is normally distributed.
Homoscedasticity of residuals or equal variance.

the relationship between response and predictor variables is linear.
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e Correlation is Positive when the values increase together, and

2.1.2 Sample statistics

e Correlation is Negative when one value decreases as the other increases

Here we look at linear correlations (correlations that follow a line).

Perfect High Low Low High Perfect
Positive Positive Positive No Negative Negative Negative
Correlation Correlation Correlation Correlation Correlation Correlation Correlation
o o : ’ o : °i.0 0%0
ooo ” °o° ’ ° ° Oo ° : ¢ O ° o °:° °°o
) -] : ° ) e © ) ° ° >

Correlation can have a value:

« 1 is a perfect positive correlation
e 0O is no correlation (the values don't seem linked at all)

« -1 is a perfect negative correlation _ .
https://www.mathsisfun.com/data/correlation.html

Guess the Correlation Game: http://guessthecorrelation.com/



2.1.2 Sample statistics

To summarize the linear association, the sample correlation is

. = 8
TY 8.8y’

where sample covariance is



2.1.3 Least squares solution




2.1.3 Least squares solution
The goal is to minimize S(bg,b1) = Y i, (yi — by — byz;)?.

1=1

Set the equations to 0, divide by —2 and solve.

The solution (bg, b;) satisfies
0 = n[y — by — blf],

n n
E x;Y; — bonT — by E CIJ?

0



3.8 Residual Plots

(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value

Residual plot (homoscedasticity)
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3.8 Residual Plots

(1) Plot of residuals versus predicted values.
(2) Plot of residuals versus explanatory value
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Probability density

Section 2.2 - Statistical linear regression model

. 20 Explanatory variable
0 X



Step 1:

Step O0:

estimator, 0

From 6, define

Consider the sample
statistic, 9, asa
random variable ©

Step 2:
Determine

E[ @] (to confirm it’s unbiased)

Var[©] (to calculate se)

Step 3:
Define
se(6 )=

estimate of \/ Var (©

Step 4:
Define
(1-0)% C.I. =

G:tcxse

C N N7 NN /\/\

Population Sample Estimator as | Expected Variance Standard Confidence

parameter statistic a Random Value of the | of the Error of Interval

or “something (“estimator”) | Variable estimator estimator estimator

we would like to

estimate”

Bo b, B, E[B,] Var[B,] se(bg) C.I. for B,

B, b, B, E[B,] Var[B,] se(b,) C.I. for B,

02 52 S? E[S?] Var[S?] se(s?) C.l. for o2
N N ? v (e P

uy(z) | Gv@)  |(iv(@) | Er@) | varly(@) | se(iy (@) c/:.;.fc& )
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Step 1:

Step O: Consider the sample
From 6, define statistic, é, asa
estimator, 0 random variable ©

N

Population Sample Estimator as
parameter statistic a Random
or “something (“estimator”) | Variable

we would like to

estimate”

Bo b, By

B b, B,

02 52 S?

py () (y (2)) (fy (x))

We have that:

E iy (z)]= By + O12

(x —7)°
= 1y52])

Var [y (z)] = 02{77,—1 +

And again, a linear combination
of normal random variables is a normal
random variable (Thing 1):

r—x 2
~ NOTmal(60+61$70- ( + [(gn 1))32])>



2.5 For simple linear regression Y; = By + f1zi+¢€;, i = 1,...,n, where ¢; are independent N (0, 0?) random
variables, the variance of the estimate of the subpopulation mean as a function of z* is
: - L, (@ —E)
Var [y (z*)] = Var [Bo + Biz*] = 02{n 1y —}
[(n—1)s3]
(a) For what value of z* is Var [fiy (z*)] minimized?
(b) For what value of z* is Var [iy (z*)] maximized?

(c) Interpret the result in (b).



2.6.4 Explanation of Student t quantiles

For the null hypothesis Hy : 81 = 0. (2.76) implies that the null distribution of B / SE(Bl) is t,,_o. For

the data version, Bl / 36(31) is the standardized version of Bl; it is invariant to scale changes of the x and y

variables (because a scale change affect the SE in the same way as (1). |B1/se(B1)| is the absolute t-ratio

statistic and large values indicate that the slope is significantly different from 0.

Hypothesis Test / “Null” hypothesis

H,:B,=0

0 Py Two-sided p-value:
H :B,#0 \
We have: “Alternative” hypothesis 2*(1-pt(a bs(tstat)’n-k))
Bi—81i .
SE(B,) tr—9 One-sided p-value:
Therefore, “under the null”, we have: 1-pt(tstat, n-k)




3.1 Least squares with two or more
explanatory variables

“hyperplane equation”
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https://commons.wikimedia.org/wiki/File:2d_multiple_linear_regression.gif




3.1 Least squares with two or more
explanatory variables

design matrix or data matrix

\ (1 zii .

(3.18) X=|

(XTX)b

/orf)

The system of normal equations

1 xll .-

i oz,




3.6 Interval estimates and standard

errors

Step 1:

Step O:

estimator, 0

From 6, define

Consider the sample
statistic, 0, as a
random variable ©

Step 2:

Determine

E[ é] (to confirm it’s unbiased)
Var[é] (to calculate se)

Step 3:
Deﬁpe
se(f )=

estimate of \/Var

Step 4:
Define
(1-a)% C.I. =

0 + ¢ x se(f)

CC NC NgZ N NOC N

Population Sample Estimator as | Expected Variance Standard Confidence

parameter statistic a Random Value of the | of the Error of Interval

or “something (“estimator”) | Variable estimator estimator estimator

we would like to

estimate”

B b 1.|B~ 2. |E[b]=B 3.|Var[B] 4. |se(b) 5. | C.l. for B 6.

= (XTX)"'X"y | N(B,o*(X" X)) = oX(XTX)! | =6/((XTX)"1);;

02 s2or MS(Res) | S2 E[S?] Var[S?] se(s?) C.l. for o2
1. 2.

Ly (x) (iiy (2)) (iiy (2)) E(fy(z)) Var(fy (z)) | se(fy(z)) | cC.l.for
1. 2. 3. a. 5. | by (2) ¢
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3.9 Categorical explanatory variables

England France Thailand

0.4 \
2
x2 0 Y

0 X1
France

Thailand England
\




3.9 Categorical explanatory variables

Consider two hypothesis tests, and recall that:
Var(A — B) = Var(A) + Var(B) — 2Cov(A,B)

: l"’France = p'EngIand

Ho: B;=0

t-stat = b,/SE(b,)
=5.53

Therefore:

p-value = 2*(1-pt(abs(5.53), n-k))
< 0.0001

Test 2:

HO: l"‘France = “’Thailand
—

Ho: B,-B,=0

t-stat = (b;-b,)/SE(b,- b,)
=-3.798

Therefore:

p-value = 2*(1-pt(abs(-3.798), n-k))
=0.002



3.4 Statistical software output for
multiple regression

e Total sum of squares for ¥ about its mean, or numerator of sample variance of y:

n

(3.44) SS(Total) = (i —7)* = (n —1)s2.

o % of Total variance explained

e Multiple correlation coefficient or coefficient of determination : % of Total variance explained
with penalty for number of parameters

5 2  def - SS(RCS) /
(3.45) = SS(Total)’

.2 def _ SS(Res)/(n—k) _f
(3.46) MBS = 1 SS(Total)/(n—1) ~ ' T 52

R? measures the proportion of total variation in the y-variable about 7 explained by the regression; a
better fitting regression model leads to a smaller value of SS(Res) and larger value of R?. The adjusted
R? makes an adjustment to R? so that it is not always increasing with additional explanatory variables.
Note that R? > 0 but adjR? could be a little negative when the model is a bad fit.



3.4 Statistical software output for
multiple regression

Although (3.45) is a mathematical definition of R?, there are alternative forms that give useful interpre-

tations. R? is also the square of a correlation coefficient in the following senses.

1. R? is the sample squared correlation of §; and y;, that is,

(3.58) Rt 12 ; - )@ l, )} .
2 Wi =) i (
where g =n"' 3", .
2. Ry (z,,..z,) is the maximum correlation between {yi} and {b1z;j1+- - ~+bpxip } over choices of (by,...,by).
That is, {5z +- - -+[§,.,:z:,-,,} has maximum correlation with {y;}, where 3,,..., [3,, are the least squares

coefficients.
2 __ ( )2
R* = (rg,y
R? is the squared sample correlation, between ?;z and Yi
R? is the squared sample correlation, between ,30 -+ 51%’ and Yi

R? is the squared sample correlation, between  I; and Y
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The art of linear regression
Categorical predictors

Quadratic (polynomial) relationships
Outliers

How to fix heterogeneity

Regression to the mean

Simpsons Paradox

Unobserved Confounding




The Burnaby Condominium Data

Goal: Better understand which factors are associated
with the price of condominiumes.

Table 1.1: Variables obtained from www.realty.org for Burnaby condominiums that were listed for sale.

Variable description

MLS identification code for multiple listing service

askprice asking price

ffarea finished floor area (in sqft, 1 sq m = 10.76 sqft)

bedrooms number of bedrooms

baths number of bathrooms (1/2 bathroom means no bathtub)

floor floor of the property

view 1 if property advertised as having a good view and view = 0 otherwise
age number of years old for the property

mfee monthly maintenance fee

region region of the city




The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiumes.

v

dat<-read.csv("~/Desktop/UBC/STAT306/burnaby_condos.csv", row.names=NULL)
head(dat)

MLS askprice ffarea beds baths floor view age mfee region

v

1 R2100519 238000 675 1 1.5 2 @ 40 317 sullivanheights
2 R2100994 278000 673 1 1.5 22 1 40 317 sullivanheights
3 R2103579 294800 740 1 1.5 17 @ 39 300 sullivanheights
4 R2099070 299000 1050 3 1.5 2 @ 37 507 sfu
5 R2122546 318000 556 1 1.5 5 1 11 216 sfu
6 R2122884 329000 663 1 1.5 1 0 18 204 edmonds
> dim(dat)

[1] 63 10

> |



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiumes.

Some variables in Table 1.1 were scaled (to avoid small coefficients in prediction equation), in particular

from the data shown in Table 1.2, transforms are the following:

e askprice — askprice/1000¢

e ffarea — ffarea/100

dat$askprice<-dat$askprice/1000
dat$ffarea<-dat$ffarea/100
dat$mfee<-dat$mfee/10

e mfee — mfee/10

VVYVY



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiumes.

Is this observational data or experimental data?

What are the implications?



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiumes.

What is the simplest linear regression model?



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiumes.

The simplest linear regression model:

V; = B+ € , with g; iid Normal

This is the intercept only model.



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

Y = BO + €. Intercept only model.

> summary(lm(Caskprice~1, data=dat))

Call:
Ilm(formula = askprice ~ 1, data = dat)
Residuals:
Min 1Q Med1ian 3Q Max
-328.30 -143.30 -47.41 97.20 901.70
Coefficients:
Estimate Std. Error t value Pr(GIltl)

(Intercept) 566.30 28.43 19.92 <2e-1lb ***
Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1

Residual standard error: 225.7 on 62 degrees of freedom



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

Y = BO + €. Intercept only model.

What questions can we answer with this model?



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

Y = BO + €. Intercept only model.

What questions can we answer with this model?

Question: What is the average cost of a condominium in Burnaby?

Answer: Our estimate f3,.

> confint(lm(Caskprice~1, data=dat))

BO — 56630 2.5% 97.5%

(Intercept) 509.4706 623.1348



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiums.

Y = BO + €. Intercept only model.

What questions can we answer with this model?

Question: Is the average cost of a condominium in Burnaby above half
a million dollars?

Answer: H,: B,> 50



> tstat<-(566.30-500)/28.43
> tstat

[1] 2.332044

> n<-dim(dat)[1]
> n

[1] 63

> k<-1

> k

[1] 1

> 1-pt(tstat,n-k)
[1] 0.0114807

> t.test(dat$askprice, mu=500, alternative="greater™)
One Sample t-test

data: dat$askprice

t = 2.3321, df = 62, p-value = 0.01148

alternative hypothesis: true mean is greater than 500
95 percent confidence interval:

518.829 Inf

sample estimates:
mean of x

566.3027

What questions can we answer with this model?

Question: Is the average cost of a condominium in Burnaby above half

a million dollars?

Answer: H,: B,> 50



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiumes.

What is the next simplest linear regression model?



The Burnaby Condominium Data

Goal: Better understand the price of Burnaby condominiumes.

What is the next simplest linear regression model?

We consider the region of the condominium.
There are 9 different regions.

What will be the reference category?



The Burnaby Condominium Data



The Burnaby Condominium Data

> summary(lm(askprice~region,data=dat))

Call:
Ilm(formula = askprice ~ region, data = dat)

What questions can we answer with this model?

Question: Is the average price of condos different in different
regions?

Answer: F-test.



The Burnaby Condominium Data

> summary(lm(askprice~region,data=dat))

Call:
Ilm(formula = askprice ~ region, data = dat)

What questions can we answer with this model?

Question: Are condos in the region of Government Road the
same price (on average) as condos in the region of
Brentwood Park?

Answer: H,: B; =0



The Burnaby Condominium Data

> summary(lm(askprice~region,data=dat))

Call:
Ilm(formula = askprice ~ region, data = dat)

What questions can we answer with this model?

Question: Are condos in the region of Government Road the
price (on average) as condos in the region of
Metrotown ?

Answer: H,: B; -B;=0



The Burnaby Condominium Data

> summary(lm(askprice~region,data=dat))

Call:
Ilm(formula = askprice ~ region, data = dat)
What questions can we answer with this model?

However, recall that this is observational data.
Therefore...



The Burnaby Condominium Data

Suppose we add finished floor area to the model.

What questions can we answer with this model?



The Burnaby Condominium Data

Suppose we add finished floor area to the model.

What questions can we answer with this model?

Question: Are condos in the region of Government Road the
same price (on average) as condos in the region of
Brentwood Park, adjusted for size?

Answer: H,: B; =0



The Burnaby Condominium Data

Suppose we add number of bedrooms to the model.



The Burnaby Condominium Data

Suppose we add number of bathrooms to the model.



