Stat 306: Finding Relationships in Data. Lecture 14 Section 3.13 Summary for multiple regression

Population parameters $\beta_0, \beta_1, \sigma^2$

Hypothesis Test $H_0: \beta_1 = 0$ $H_1: \beta_1 \neq 0$ Sample statistics $b_0 = 17.7$ $b_1 = 0.55$ s = 15.5 $R^2 = 0.49$ For parameter β_1 : 95% C.I. = [0.05]

For parameter β_1 : 95% C.I. = [0.05, 1.05] *p*-value = 0.036

Age vs. Money

Sample statistics

bo	=	17.7
b_1	=	0.55
S	=	15.5
R ²	=	0.49

Methods:We collected a random sample of individuals and for each
determined their age (recorded in years) and the amount
of money (in dollars) in their accounts. Analysis of
the data was done using linear regression.For parameter β_1 :
95% C.I. = [0.05, 1.05]
p-value = 0.036

Results:We obtained a random sample of n = 9 subjects. There is a
statistically significant association between age and money (p-value =0.036).
For every additional year in age, an individual's amount of money increases
on average by an estimated of \$0.55 (95% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money (R²=0.49). We **predict** that a 50 year old will have \$45.1 (95% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95% P.I. = [\$0.8, \$78.4]).

The purpose of this observational study was to

demonstrate if, and to what extent, age is

associated with money.

Small Print: The analysis rests on the following assumptions:

Objective:

Design and

- the observations are independently and identically distributed.
- the **response** variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the <u>relationship</u> between **response** and **predictor** variables is linear.

2.1.2 Sample statistics

- Correlation is **Positive** when the values **increase** together, and
- Correlation is Negative when one value decreases as the other increases

Here we look at **linear correlations** (correlations that follow a line).

Correlation can have a value:

- 1 is a perfect positive correlation
- 0 is no correlation (the values don't seem linked at all)
- -1 is a perfect negative correlation

https://www.mathsisfun.com/data/correlation.html

Guess the Correlation Game: http://guessthecorrelation.com/

2.1.2 Sample statistics

To summarize the linear association, the sample correlation is

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

where sample covariance is

$$s_{xy} = (n-1)^{-1} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}).$$

2.1.3 Least squares solution

2.1.3 Least squares solution

The goal is to minimize $S(b_0, b_1) = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$.

Set the equations to 0, divide by -2 and solve.

The solution (\hat{b}_0, \hat{b}_1) satisfies

$$0 = n[\overline{y} - \hat{b}_0 - \hat{b}_1 \overline{x}],$$

$$0 = \sum_{i=1}^n x_i y_i - \hat{b}_0 n \overline{x} - \hat{b}_1 \sum_{i=1}^n x_i^2.$$

3.8 Residual Plots

(1) Plot of residuals versus predicted values.(2) Plot of residuals versus explanatory value

3.8 Residual Plots

(1) Plot of residuals versus predicted values.(2) Plot of residuals versus explanatory value

Section 2.2 - Statistical linear regression model

Step 0:From θ , define estimator, $\hat{\theta}$		the sample , as a riable $\hat{\Theta}$	tep 2: etermine $[\hat{\Theta}]$ (to confirm it's unbiased) $ar[\hat{\Theta}]$ (to calculate se)	Step 3: Define $se(\hat{\theta}) =$ estimate of $$	Var ($\hat{\Theta}$)	Step 4: Define $(1-\alpha)\%$ C.I. = $\hat{\theta} \pm c \times se(\hat{\theta})$	
Population parameter or "something we would like to estimate"	Sample statistic ("estimator")	Estimator as a Random Variable	Expected Value of the estimator	Variance of the estimator	Standard Error of estimator	Confidence Interval	
β ₀	b ₀	B ₀	E[B ₀]	Var[B ₀]	se(b ₀)	C.I. for β_0	
β_1	b ₁	B ₁	E[B ₁]	Var[B ₁]	se(b ₁)	C.I. for β_1	
σ ²	s ²	S ²	E[S ²]	Var[S ²]	se(s ²)	C.I. for σ^2	
$\mu_Y(x)$	$(\hat{\mu}_Y(x))$	$(\hat{\mu}_Y(x))$	$E(\hat{\mu}_Y(x))$	$\operatorname{Var}(\hat{\mu}_Y(x))$	$se(\hat{\mu}_Y(x))$	C.I. for $\mu_Y(x)$	

We have that:

$$E[\hat{\mu}_{Y}(x)] = \beta_{0} + \beta_{1}x$$
$$Var[\hat{\mu}_{Y}(x)] = \sigma^{2} \left\{ n^{-1} + \frac{(x-\overline{x})^{2}}{[(n-1)s_{x}^{2}]} \right\}$$

And again, a linear combination of normal random variables is a normal random variable **(Thing 1)**:

$$\mu_Y(x) \sim Normal\left(\beta_0 + \beta_1 x, \sigma^2(\frac{1}{n} + \frac{(x-\bar{x})^2}{[(n-1)s_x^2]})\right)$$

2.5 For simple linear regression $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, ..., n, where ϵ_i are independent $N(0, \sigma^2)$ random variables, the variance of the estimate of the subpopulation mean as a function of x^* is

$$\mathrm{Var}\left[\hat{\mu}_{Y}(x^{*})
ight] = \mathrm{Var}\left[\hat{B}_{0}+\hat{B}_{1}x^{*}
ight] = \sigma^{2}\Big\{n^{-1}+rac{(x^{*}-\overline{x})^{2}}{[(n-1)s_{x}^{2}]}\Big\}.$$

- (a) For what value of x^* is $\operatorname{Var}\left[\hat{\mu}_Y(x^*)\right]$ minimized?
- (b) For what value of x^* is $\operatorname{Var}\left[\hat{\mu}_Y(x^*)\right]$ maximized?
- (c) Interpret the result in (b).

2.6.4 Explanation of Student t quantiles

For the null hypothesis $H_0: \beta_1 = 0$. (2.76) implies that the null distribution of $\hat{B}_1/SE(\hat{B}_1)$ is t_{n-2} . For the data version, $\hat{\beta}_1/se(\hat{\beta}_1)$ is the standardized version of $\hat{\beta}_1$; it is invariant to scale changes of the x and yvariables (because a scale change affect the SE in the same way as $\hat{\beta}_1$). $|\hat{\beta}_1/se(\hat{\beta}_1)|$ is the absolute t-ratio statistic and large values indicate that the slope is significantly different from 0.

Hypothesis Test $H_0: \beta_1 = 0 \checkmark$ $H_1: \beta_1 \neq 0 \checkmark$ We have: $\frac{B_1 - \beta_1}{SE(B_1)} \sim t_{n-2}$

Therefore, "under the null", we have:

$$\frac{B_1}{SE(B_1)} \sim t_{n-2}$$

Two-sided *p*-value:

2*(1-pt(abs(tstat),n-k))

One-sided *p*-value:

1-pt(tstat, n-k)

3.1 Least squares with two or more explanatory variables

"hyperplane equation"

https://commons.wikimedia.org/wiki/File:2d_multiple_linear_regression.gif

3.1 Least squares with two or more explanatory variables

The system of normal equations

3.6 Interval estimates and standard errors

Step 0: From θ, definestimator, $\hat{\theta}$	ne	Step 1: Consider the sample statistic, $\hat{\theta}$, as a random variable $\hat{\Theta}$ Step 2: 		$\overline{\operatorname{Var}\left(\hat{\Theta}\right)}$	Step 4: Define $(1-\alpha)$ % C.I. = $\hat{\theta} \pm c \times se(\hat{\theta})$				
Population parameter or "something we would like to estimate"	Samp statis ("esti	le tic mator")	Estimator a Randon Variable	r as n	Expected Value of the estimator	ne	Variance of the estimator	Standard Error of estimator	Confidence Interval
β	$\begin{vmatrix} \mathbf{b} \\ = (\mathbf{X}^{T}) \end{vmatrix}$	$1.$ $\mathbf{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$	B ~ N(β _j σ^2 (X ^T)	2. (x) ⁻¹	E[b] = β	3.	Var[B] 4. = $\sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$	se(b) 5. = $\hat{\sigma} \sqrt{[(\mathbf{X}^T \mathbf{X})^{-1}]_{jj}}$	C.I. for β 6.
σ^2	s ² or I	MS(Res) 1.	S ²	2.	E[S ²]	3.	Var[S ²]	se(s ²)	C.I. for σ^2
$\mu_{Y}(\mathbf{x})$	$(\hat{\mu}_Y($	(x)) 1.	$(\hat{\mu}_Y(x))$	2.	$E(\hat{\mu}_Y(x))$	3.	$\operatorname{Var}(\hat{\mu}_Y(x))$ 4.	$se(\hat{\mu}_Y(x))$ 5.	C.I. for $\mu_Y(x)$ 6.

3.9 Categorical explanatory variables

3.9 Categorical explanatory variables

Consider two hypothesis tests, and recall that: Var(A - B) = Var(A) + Var(B) - 2Cov(A,B)

Test 1: $H_0: \mu_{\text{France}} = \mu_{\text{England}}$ \Rightarrow $H_0: \beta_1 = 0$ t-stat = b₁/SE(b₁) = 5.53

Therefore:

Test 2: $H_0: \mu_{\text{France}} = \mu_{\text{Thailand}}$ \Rightarrow $H_0: \beta_1 - \beta_2 = 0$ t-stat = $(b_1 - b_2)/\text{SE}(b_1 - b_2)$ = -3.798

Therefore:

p-value = 2*(1-pt(abs(-3.798), n-k)) = 0.002

3.4 Statistical software output for multiple regression

• Total sum of squares for y about its mean, or numerator of sample variance of y:

(3.44)
$$SS(Total) = \sum_{i=1}^{n} (y_i - \overline{y})^2 = (n-1)s_y^2.$$

% of Total variance explained

• Multiple correlation coefficient or coefficient of determination :

% of Total variance explained with penalty for number of parameters

(3.45)
$$R^2 \stackrel{\text{def}}{=} 1 - \frac{SS(Res)}{SS(Total)},$$

(3.46)
$$\operatorname{adj} R^2 \stackrel{\text{def}}{=} 1 - \frac{SS(Res)/(n-k)}{SS(Total)/(n-1)} = 1 - \frac{\hat{\sigma}^2}{s_y^2}$$

 R^2 measures the proportion of total variation in the *y*-variable about \overline{y} explained by the regression; a better fitting regression model leads to a smaller value of SS(Res) and larger value of R^2 . The adjusted R^2 makes an adjustment to R^2 so that it is not always increasing with additional explanatory variables. Note that $R^2 \geq 0$ but $adjR^2$ could be a little negative when the model is a bad fit.

3.4 Statistical software output for multiple regression

Although (3.45) is a mathematical definition of R^2 , there are alternative forms that give useful interpretations. R^2 is also the square of a correlation coefficient in the following senses.

1. R^2 is the sample squared correlation of \hat{y}_i and y_i , that is,

(3.58)
$$R^{2} = \frac{\{\sum_{i=1}^{n} (y_{i} - \overline{y})(\hat{y}_{i} - \overline{\hat{y}})\}^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2} \cdot \sum_{i=1}^{n} (\hat{y}_{i} - \overline{\hat{y}})^{2}},$$

where $\overline{\hat{y}} = n^{-1} \sum_{i=1}^{n} \hat{y}_i$.

2. $R_{y;(x_1,...,x_p)}$ is the maximum correlation between $\{y_i\}$ and $\{b_1x_{i1}+\cdots+b_px_{ip}\}$ over choices of (b_1,\ldots,b_p) . That is, $\{\hat{\beta}_1x_{i1}+\cdots+\hat{\beta}_px_{ip}\}$ has maximum correlation with $\{y_i\}$, where $\hat{\beta}_1,\ldots,\hat{\beta}_p$ are the least squares coefficients.

$$R^2 = (r_{\hat{y},y})^2$$

R² is the squared sample correlation, between \hat{y}_i and y_i

R² is the squared sample correlation, between $\hat{eta}_0 + \hat{eta}_1 x_i$ and y_i R² is the squared sample correlation, between x_i and y_i

Changed?	Location shift to X_1	Scale change to X ₁
b ₁	×	~
SE(b ₁)	×	
Confidence Interval for β_1	×	
p-value H ₀ : $\beta_1 = 0$	X	X
MS(Res)	X	X
R-squared	X	X
Adjusted R-squared	×	×
F-test	×	×

Changed?	Location shift to X ₁	Scale change to X ₁		
b _o	~	×		
SE(b ₀)	~	×		
Confidence Interval for β_0	~	×		
p-value $H_0: \beta_0 = 0$	~	×		

Model:

$$Y = \beta_0 + \beta_1 X_1$$

The art of linear regression

- Categorical predictors
- Quadratic (polynomial) relationships
- Outliers
- How to fix heterogeneity
- Regression to the mean
- Simpsons Paradox
- Unobserved Confounding

Goal: Better understand which factors are associated with the price of condominiums.

Table 1.1: Variables obtained from www.realty.org for Burnaby condominiums that were listed for sale.

Variable	description
MLS	identification code for multiple listing service
askprice	asking price
ffarea	finished floor area (in sqft, 1 sq m = 10.76 sqft)
bedrooms	number of bedrooms
baths	number of bathrooms $(1/2$ bathroom means no bathtub)
floor	floor of the property
view	1 if property advertised as having a good view and view $= 0$ otherwise
age	number of years old for the property
mfee	monthly maintenance fee
region	region of the city

Goal: Better understand the price of Burnaby condominiums.

> dat<-read.csv("~/Desktop/UBC/STAT306/burnaby_condos.csv", row.names=NULL)
> head(dat)

	MLS	askprice	ffarea	beds	baths	floor	view	age	mfee	region
1	R2100519	238000	675	1	1.5	2	0	40	317	sullivanheights
2	R2100994	278000	673	1	1.5	22	1	40	317	sullivanheights
3	R2103579	294800	740	1	1.5	17	0	39	300	sullivanheights
4	R2099070	299000	1050	3	1.5	2	0	37	507	sfu
5	R2122546	318000	556	1	1.5	5	1	11	216	sfu
6	R2122884	329000	663	1	1.5	1	0	18	204	edmonds
	dim(dat)									

- > dim(dat) [1] 63 10
- LT 02

Goal: Better understand the price of Burnaby condominiums.

Some variables in Table 1.1 were scaled (to avoid small coefficients in prediction equation), in particular from the data shown in Table 1.2, transforms are the following:

- askprice \rightarrow askprice/10000
- ffarea \rightarrow ffarea/100
- mfee \rightarrow mfee/10
- > dat\$askprice<-dat\$askprice/1000</pre>
- > dat\$ffarea<-dat\$ffarea/100</p>
- > dat\$mfee<-dat\$mfee/10</pre>
- >

Goal: Better understand the price of Burnaby condominiums.

Is this observational data or experimental data?

What are the implications?

Goal: Better understand the price of Burnaby condominiums.

What is the simplest linear regression model?

Goal: Better understand the price of Burnaby condominiums.

The simplest linear regression model:

$y_i = \beta_0 + \epsilon_i$, with ϵ_i iid Normal

This is the intercept only model.

Goal: Better understand the price of Burnaby condominiums. $y_i = \beta_0 + \varepsilon_i$ Intercept only model.

```
> summary(lm(askprice~1, data=dat))
Call:
lm(formula = askprice ~ 1, data = dat)
Residuals:
   Min 1Q Median 3Q
                                Max
-328.30 -143.30 -47.41 97.20 901.70
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 566.30 28.43 19.92 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 225.7 on 62 degrees of freedom
```

Goal: Better understand the price of Burnaby condominiums. $y_i = \beta_0 + \varepsilon_i$ Intercept only model.

What questions can we answer with this model?

What questions can we answer with this model?

Question: What is the average cost of a condominium in Burnaby?

Answer: Our estimate β_0 .

 $\hat{\beta}_0 = 566.30$

Goal: Better understand the price of Burnaby condominiums. $y_i = \beta_0 + \varepsilon_i$ Intercept only model.

What questions can we answer with this model?

Question: Is the average cost of a condominium in Burnaby above half a million dollars?

Answer: H_0 : $\beta_0 > 50$

```
> tstat<-(566.30-500)/28.43
> tstat
[1] 2.332044
> n<-dim(dat)[1]
> n
[1] 63
> k<-1
> k
[1] 1
> 1-pt(tstat,n-k)
[1] 0.0114807
```

```
> t.test(dat$askprice, mu=500, alternative="greater")
    One Sample t-test
data: dat$askprice
t = 2.3321, df = 62, p-value = 0.01148
alternative hypothesis: true mean is greater than 500
95 percent confidence interval:
    518.829 Inf
sample estimates:
mean of x
    566.3027
```

What questions can we answer with this model?

Question: Is the average cost of a condominium in Burnaby above half a million dollars?

Answer: H_0 : $\beta_0 > 50$

Goal: Better understand the price of Burnaby condominiums.

What is the next simplest linear regression model?

Goal: Better understand the price of Burnaby condominiums.

What is the next simplest linear regression model?

We consider the region of the condominium. There are 9 different regions.

What will be the reference category?

k = ?

> summary(lm(askprice~region,data=dat))

```
Call:
lm(formula = askprice ~ region, data = dat)
```

What questions can we answer with this model?

Question: Is the average price of condos different in different regions?

Answer: F-test.

> summary(lm(askprice~region,data=dat))

```
Call:
lm(formula = askprice ~ region, data = dat)
```

What questions can we answer with this model?

Question: Are condos in the region of Government Road the same price (on average) as condos in the region of Brentwood Park?

Answer: H_0 : $\beta_3 = 0$

> summary(lm(askprice~region,data=dat))

```
Call:
lm(formula = askprice ~ region, data = dat)
```

What questions can we answer with this model?

Question: Are condos in the region of Government Road the price (on average) as condos in the region of Metrotown ?

Answer: H_0 : $\beta_3 - \beta_5 = 0$

> summary(lm(askprice~region,data=dat))

```
Call:
lm(formula = askprice ~ region, data = dat)
```

What questions can we answer with this model?

However, recall that this is observational data. Therefore...

Suppose we add finished floor area to the model.

What questions can we answer with this model?

Suppose we add finished floor area to the model.

What questions can we answer with this model?

Question: Are condos in the region of Government Road the same price (on average) as condos in the region of Brentwood Park, adjusted for size?

Answer: H_0 : $\beta_3 = 0$

Suppose we add number of bedrooms to the model.

Suppose we add number of bathrooms to the model.