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Sec$on	3.11	Interpreta$ons	

•  4	categories	of	study	
	
•  Three	issues:	
– 1.	Regression	to	the	mean	
– 2.	Unobserved	confounding	
– 3.	Mul$ple	comparisons	
	

•  Look	through	some	papers	



Observa$onal	 Experimental	

Goal	is	
Explana$on	 1.		 2.	

Goal	is	
Predic$on	 3.	 4.	

Four	categories	of	scien$fic	study	



Studies	with	the	goal	of	explaining	a	phenomenon	

Observa1onal	studies	are	defined	by		
having	no	interven$on	by	researchers.	
	
The	exploratory	variables	in	the	model	(X)	are	not		
determined	by	the	researchers.		OLen	data		
comes	from	surveys	or	databases.	
	
Observa1onal	studies	are	important	in	the		
following	fields:	
	

	-	macro-economics	
	-	epidemiology/public	health	
	-	public	policy	
	-	poli1cal	science	
	-	sociology	
	-	criminology	

1.		



Experimental	studies	are	defined	by		
having	a	specific	interven$on	by	researchers.		
	
At	least	one	exploratory	variable	in	the	model	(X)	is	
determined	for	each	observa1on	by	the	researchers.	
This	is	oLen	done	by	randomiza$on.			
Data	is	collected	by	researchers.	
	
Experimental	studies	are	important	in	the		
following	fields:	
	

	-	medicine	(clinical	trials)	
	-	educa1onal	research	
	-	psychology	
		

2.		
Studies	with	the	goal	of	explaining	a	phenomenon	



Experimental	studies	for	predic1on	
are	important	in	the	following	fields:	
	

	-	AB	tes1ng	(online	adver1sing,	website	op1miza1on)	
		

Studies	with	the	goal	of	predic$ng	future	events	

4.	

3.	 Observa1onal	studies	for	predic1on	
are	important	in	the	following	fields:	
	

	-	Economics	
	-	transporta1on	research	
	-	real	estate	
	-	financials	
	-	insurance	



1.	Regression	to	the	mean	
Example:	
	
On	Day	1:	Students	take	a	mul1ple	choice	test	and	fill	out	the	answers	randomly.	
	
We	look	at	the	results,	a	histogram	of	test	scores:	
	
	 Histogram of day1test
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1.	Regression	to	the	mean	
Example:	
	
On	Day	2:	Students	take	another	mul1ple	choice	test	and	fill	out	the	answers	randomly.	
	
We	look	at	the	results,	a	histogram	of	test	scores:	
	
	 Histogram of day2test
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1.	Regression	to	the	mean	
Example:	
	
Let’s	look	at	a	scaXerplot	of	each	student’s	two	test	scores:	
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1.	Regression	to	the	mean	
Example:	
	
Those	who	did	worst	on	the	first	test,	tended	to	improve	their	score	on	the	second	test.	
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1.	Regression	to	the	mean	
Let’s	imagine	someone	has	a	new	“treatment”	to	help	students	who	do	poorly	
on	mul1ple	choice	tests	get	beXer	grades.			
	
What	would	happen	if	we	tested	this	treatment?		Would	we	see	any	improvement?	
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•  The	hoXest	place	in	the	country	today	is	more	likely	to	be	cooler	tomorrow	

than	hoXer,	as	compared	to	today.		

•  The	best	performing	mutual	fund	over	the	last	three	years	is	more	likely	to	
see	rela1ve	performance	decline	than	improve	over	the	next	three	years.		

•  The	most	successful	Hollywood	actor	of	this	year	is	likely	to	have	less	gross	
than	more	gross	for	his	or	her	next	movie.		

•  The	baseball	player	with	the	greatest	ba\ng	average	by	the	All-Star	break	
is	more	likely	to	have	a	lower	average	than	a	higher	average	over	the	
second	half	of	the	season.	

hXps://en.wikipedia.org/wiki/Regression_toward_the_mean	

More	Examples	from	Wikipedia	

1.	Regression	to	the	mean	



1.	Regression	to	the	mean	

•  “Regression	to	the	mean”	can	be	a	problem	for	observa$onal	studies	depending	on	
						which	observa1ons	are	included	in	the	analysis.	
			
•  “Regression	to	the	mean”	can	be	a	problem	for	experimental	studies		
						if	subjects	are	used	as	their	own	control.		In	other	words	if	you	simply	compare		
					The	outcome	post-treatment	to	pre-treatment,	you	will	likely	see	“regression	to	
						the	mean”	and	could	mistake	this	for	treatment	effect.	

•  The	best	way	to	avoid	this	problem	in	experimental	studies		is	to	randomize	subjects		
						to	two	groups:		a	treatment	group	and	a	control	group.		



1.	Regression	to	the	mean	

The	measurement	of	blood	pressure	serves	as	a	good	
example.	If	blood	pressure	is	ini1ally	measured	in	a	
group	of	pa1ents	and	then	re-measured	aLer	a	
period	of	1me,	people	with	extreme	blood	pressure	
at	Time	1	will	tend	to	be	closer	to	the	average	level	at	
Time	2.		This	improvement	is	not	due	to	any	
treatment,	only	due	to	random	error.	
	
	People	usually	seek	treatment	when	their	symptoms	
are	par1cularly	severe.	If	treatment	is	sought	when	
these	symptoms	are	at	their	worst,	these	symptoms	
should	be	less	severe	simply	by	random	fluctua1ons	
and	natural	recovery,	even	when	no	treatment	is	
used	

Yu	and	Chen	(2015)	
hXps://www.fron1ersin.org/ar1cles/10.3389/fpsyg.2014.01574/full	



1.	Regression	to	the	mean	
Regression	to	the	mean	can	be	a	problem	for	observa$onal	studies		
and	experimental	studies	(that	have	no	control	group).	

day1test<-round(rnorm(100,50,10))	
hist(day1test,	col="grey",	xlab="test	score",	breaks=seq(0,100,10))	
	
day2test<-round(rnorm(100,50,10))	
hist(day2test,	col="grey",	xlab="test	score",	breaks=seq(0,100,10))	
	
plot(day1test,	day2test,	col="grey",	cex=5)	
	
#	Let's	test	our	"treatment"	on	those	students	that	
#	failed	the	first	test.	Do	we	see	any	improvement?	
change<-day2test-day1test	
change[day1test<50]	
	
#	Using	linear	regression	or	equivalently	a	t-test:	
summary(lm(change[day1test<50]~1))	
t.test(change[day1test<50])	



2.	Unobserved	Confounding	

The	Nurses’	Health	Study	(NHS)	was	one	of	the	largest	and	most	influen1al	
observa1onal	studies	in	health.		
	
The	NHS	began	in	1976	and	subsequently	followed	more	than	120,000	married	
female	registered	nurses.	
	
The	NHS	published	results	in	the	1991	and	found	that	hormone	therapy	in	post-
menopausal	women	was	associated	with	a	substan1al	reduc1on	in	the	
development	of	heart	disease.	
	
In	1998,	the	Heart	and	Estrogen-proges1n	Replacement	Study	(HERS)	randomized	
2,763	women		to	receive	either	hormone	therapy	or	placebo.		It	concluded	that	
hormone	therapy	increased,	not	decreased,	the	risk	of	heart	disease.	

Most	famous	example:	





2.	Unobserved	Confounding	

X	 Y	

Z	

Variable	that	is	known	
and	measured	

Outcome	variable	

Variable	that	is	unknown	and/or	unmeasured	



2.	Unobserved	Confounding	

X	 Y	

Z	

Size	of	garage	
0	=	no	garage	
1	=	1	car	garage	
2	=	2	car	garage	

Sale	price	($)	

Loca$on			
(Downtown	vs.	Suburbs)	 n	=	200	houses	for	sale	

What	is	the	effect	of	having	a	larger	garage	on	the	sale	price	of	the	house?	



2.	Unobserved	Confounding	

X	 Y	

Z	

Police	budget	 Murder	rate	

Crime	level	 n	=	60	ci1es	

What	is	the	effect	of	increasing	or	decreasing	the	police	budget	on	the	murder	rate?	



3.	“Mul$ple	comparisons”	

Type	1	error	=		Pr(reject	H0	|	H0	is	true)	

For	linear	regression:	

Type	1	error	=		Pr(βj	is	not	zero	|	βj	=	0)	
	 	 	 	=		Pr(	p-value	for	βj	is	small|	βj	=	0)	

	

	 	0.05 	>		Pr(	p-value	for	βj<0.05|	βj	=	0)	
	

We	want	to	control	type	1	error:	



3.	“Mul$ple	comparisons”	

	 	0.05 	>		Pr(	p-value	for	βj<0.05|	βj	=	0)	
	

We	want	to	control	type	1	error:	

This	means	that	1	out	of	every	20	1mes	we	claim	that	a	βj	is	significant		(i.e.	reject	
H0:	βj	=	0),	we	will	have	made	a	mistake.	



3.	“Mul$ple	comparisons”	

	 	0.05 	>		Pr(	p-value	for	βj<0.05|	βj	=	0)	
	

We	want	to	control	type	1	error:	

What	happens	if	we	have	20	variables	in	our	model?	
	
In	other	words,	for	one	model,	we	test	whether	each	βj	is	significant			
(i.e.	reject	H0:	βj	=	0,	for	j=1,…20).	



Age	vs.	Money	

Popula$on	

cash	($)	
on	hand	

Popula1on	
parameters	

Hypothesis	Test	

Sample,	n=9	
Sample	sta1s1cs	

β0	,	 σ2				β1	,	
	

H0	:	β1	=	0	
H1	:	β1	≠	0	
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Age	in	
Years		

PREDICTOR variable 

 X 

RESPONSE variable 

       Y 

b0			=		17.7	
b1			=		0.55	
s					=		15.5	
R2				=		0.49	
	

For	sta1s1c	β1	:		

linear	
regression	



Age	vs.	Money	
Objec$ve:		 	The	purpose	of	this	observa$onal	study	was	to	

	 	 		demonstrate	if,	and	to	what	extent,	age	is	
	 	 		associated	with	use	of	cash.	

Design	and		
Methods:		 	We	collected	a	random	sample	of	individuals	and	for	each	

	 	 	determined	their	age	(recorded	in	years)	and	the	amount	
	 	 	of	cash	(in	dollars)	they	had	on	hand.	Analysis	of		
	 	 	the	data	was	done	using	linear	regression.	

	
Results: 	 	We	obtained	a	random	sample	of	n	=	9	subjects. 	There	is	a		

	 	 	sta1s1cally	significant	associa1on	between	age	and	money	(p-value	=0.036).	
	 	 	For	every	addi1onal	year	in	age,	an	individual’s	amount	of	money	increases	
	 	 	on	average	by	an	es1mated	of	$0.55	(95%	C.I.	=	[$0.05,	$1.05]).	
	 	 		

Conclusions: 	We	found	that,	as	hypothesized,	age	is	associated	with	cash	use.		
	 	 	In	our	sample	age	accounted	for	about	half	of	the	variability		
	 	 	observed	in	money	(R2=0.49).		We	predict	that	a	50	year	old	will		
	 	 	have	$45.1	(95%	P.I.	=	[$5.6,	$84.5]),	whereas	a	40	year	
	 	 	old	will	have	$39.6	(95%	P.I.	=	[$0.8,	$78.4]).	

	
Small	Print: 	The	analysis	rests	on	the	following	assump1ons:	

	 	 	-	 	the	observa1ons	are	independently	and	iden1cally	distributed.	
	 	 	- 	the	response	variable,	money,	is	normally	distributed.	
	 	 	-	 	Homoscedas1city	of	residuals	or	equal	variance.	
	 	 	- 	the	rela1onship	between	response	and	predictor	variables	is	linear.	

For	parameter	β1	:		









Giuli	et	al.	(2014)	



Haby	et	al.	(2011)	



Promislow	et	al.	(2002)	



Fallowfield	et	al.	(2002)	







•  Categorical	predictors	

•  Quadra1c	(polynomial)	rela1onships	
	
•  Outliers	

•  How	to	fix	heterogeneity	
	
•  Regression	to	the	mean	
	
•  Simpsons	Paradox	

•  Unobserved	Confounding	

The	art	of	linear	regression	


