Stat 306:

Finding Relationships in Data.
Lecture 12
Section 3.11 Multicollinearity


```
# We define y as "cash on hand ($)"
y<- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40,93)
# We also consider "age (years)" as a continuous variable, x1
# and also "income (K$)", as a continuous variable, x2
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
# x1 as measured originally:
years_since_birth <- x1
# Location shift and scale change to x1:
years_since_adult <- x1-18
# Scale change to x1:
months_since_birth <- x1*24
# using "handmade" linear regression function:
linear_reg(y, X=cbind(1, years_since_birth))
linear_reg(y, X=cbind(1, years_since_adult))
linear_reg(y, X=cbind(1, months_since_birth))
# or using lm function:
    summary(lm(y~ years_since_birth))
    summary(lm(y~ years_since_adult))
    summary(lm(y~ months_since_birth))
```

Changed?	Location shift to X_{1}	Scale change to X_{1}
$\mathrm{~b}_{1}$	X	
SE($\left.b_{1}\right)$	X	
Confidence Interval for β_{1}	X	
p-value $\mathrm{H}_{0}: \beta_{1}=0$	X	X
MS(Res)	X	X
R-squared	X	X
Adjusted R-squared	X	X
F-test	X	X

Changed?	Location shift to X_{1}	Scale change to X_{1}
b_{0}	\checkmark	X
SE(b_{0})	\checkmark	X
Confidence Interval for β_{0}	\checkmark	X
p-value $H_{0}: \beta_{0}=0$	\checkmark	X

Model:

$$
Y=\beta_{0}+\beta_{1} X_{1}
$$

units

95\% Confidence Interval for the subpopulation mean:

$$
\hat{\mu}_{Y}\left(\mathbf{X}^{*}\right)+/-t_{n-k, 0.975} s e\left[\hat{\mu}_{Y}\left(\mathbf{x}^{*}\right)\right]
$$

$$
\text { where: } \quad s e\left[\hat{\mu}_{Y}\left(\mathbf{x}^{*}\right)\right]=\hat{\sigma} \sqrt{\mathbf{x}^{* T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{x}^{*}}
$$


```
# We define y as "cash on hand ($)"
```

$y<-c(71,54,43,45,21,11,30,45,10,90,40,93)$
\# We also consider "age (years)" as a continuous variable, x1
\# and also "income (K\$)", as a continuous variable, x2
$\mathrm{x} 1<-\mathrm{c}(82,45,71,22,29,9,12,18,24,72,10,81)$
\# x1 as measured originally:
years_since_birth <- x1
\# Location shift and scale change to x1:
years_since_adult <- x1-18
\# Scale change to x1:
months_since_birth <- x1*24
\# using "handmade" linear regression function:
linear_reg(y, X=cbind(1, years_since_birth, (years_since_birth)^2))
linear_reg(y, X=cbind(1, years_since_adult, (years_since_adult)^2))
linear_reg(y, X=cbind(1, months_since_birth, (months_since_birth)^2))
\# or using lm function:
summary $(1 m(y \sim$ years_since_birth + I(years_since_birth^2)))
summary $(1 m(y \sim$ years_since_adult + I(years_since_adult^2)))
summary $\left(\operatorname{lm}\left(y \sim\right.\right.$ months_since_birth $\left.\left.+I\left(m o n t h s _s i n c e _b i r t h \wedge 2\right)\right)\right)$

What is different in the output between the 3 models? What is the same?

Changed?	Location shift to X_{1}	Scale change to X_{1}	Changed?	Location shift to X_{1}	Scale change to X_{1}
b_{1}	\checkmark	\checkmark	b_{0}	\checkmark	X
$\mathrm{SE}\left(\mathrm{b}_{1}\right)$	v	\checkmark	SE(b_{0})	\checkmark	X
Confidence Interval for $\boldsymbol{\beta}_{1}$	\checkmark	ν	Confidence Interval for β_{0}	\checkmark	X
p-value $\mathrm{H}_{0}: \beta_{1}=0$	\checkmark	\checkmark	p-value $H_{0}: \beta_{0}=0$	\checkmark	X
MS(Res)	X	X	b_{2}	X	\checkmark
R-squared	X	X	SE(b_{2})	X	\checkmark
Adjusted R-squared	X	X	Confidence Interval for $\boldsymbol{\beta}_{2}$	X	\checkmark
F-test	X	X	p-value $\mathrm{H}_{0}: \beta_{2}=0$	X	X

Multicollinearity

Let's remember:

$$
\operatorname{Var}[\mathbf{B}]=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

Since a standard error is defined as an estimated square root of the variance of an estimator,

$$
\begin{equation*}
s e\left(\hat{\beta}_{j}\right)=\hat{\sigma} \sqrt{\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right]_{j j}}, \quad j=0,1, \ldots, p \tag{3.77}
\end{equation*}
$$

	Adding X_{2}, $\operatorname{Cor}\left(X_{2}, X_{1}\right)=0$
b_{1}	X
SE(b_{1})	\checkmark
Confidence Interval for β_{1}	\checkmark
p-value $H_{0}: \beta_{1}=0$	\checkmark
MS(Res)	\checkmark
R-squared	\checkmark
Adjusted R-squared	\checkmark

$$
Y=\beta_{0}+\beta_{1} X_{1}
$$

VS.

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}
$$

```
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40,93)
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
x2 <- c(-15.35, 6.66, -54.29, 23.52, -33.99, -24.88, 6.48, 28.91, -48.96,
38.34, 31.52, 32.43)
# X1 and X2 are not correlated:
cor(x1, x2)
linear_reg(y, X=cbind(1, x1))
linear_reg(y, X=cbind(1, x1, x2))
summary(lm(y ~ x1))
summary(lm(y ~ x1 + x2))
```

	$\begin{aligned} & \text { Adding } X_{2}, \\ & \operatorname{Cor}\left(\mathrm{X}_{2}, \mathrm{X}_{1}\right)=0 \end{aligned}$	$\begin{aligned} & \text { Adding } X_{2}, \\ & \operatorname{Cor}\left(X_{2}, X_{1}\right) \neq 0 \end{aligned}$	$Y=\beta_{0}+\beta_{1} X_{1}$ vs. $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}$
b_{1}	X	\checkmark	
SE(b_{1})	\checkmark	\checkmark	
Confidence Interval for β_{1}	\checkmark	\checkmark	
p-value $\mathrm{H}_{0}: \beta_{1}=0$	\checkmark	\checkmark	
MS(Res)	\checkmark	\checkmark	
R-squared	\checkmark	\checkmark	
Adjusted R-squared	\checkmark	ν	

```
y<- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40,93)
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
x2<-c(60, 55, 26, 21, 0, 15, 17, 31, 0, 112, 24, 92)
# X1 and X2 are somewhat correlated:
cor(x1, x2)
linear_reg(y, X=cbind(1, x1))
linear_reg(y, X=cbind(1, x1, x2))
summary(lm(y ~ x1))
summary(lm(y ~ x1 + x2))
```

	$\begin{aligned} & \text { Adding } X_{2}, \\ & \operatorname{Cor}\left(X_{2}, X_{1}\right)=0 \end{aligned}$	$\begin{aligned} & \text { Adding } X_{2}, \\ & \operatorname{Cor}\left(X_{2}, X_{1}\right) \neq 0 \end{aligned}$	Adding X_{2}, $\left\|\operatorname{Cor}\left(X_{2}, X_{1}\right)\right\| \approx 1$
b_{1}	X	\checkmark	!!
SE(b_{1})	\checkmark	\checkmark	!!
Confidence Interval for β_{1}	\checkmark	\checkmark	!!
p-value $\mathrm{H}_{0}: \beta_{1}=0$	\checkmark	\checkmark	!!
MS(Res)	\checkmark	ν	!!
R-squared	\checkmark	\checkmark	! !
Adjusted R-squared	\checkmark	\checkmark	!!

```
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40, 93)
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
x2 <- c(101, 63, 91, 36, 43, 24, 31, 37, 36, 87, 34, 98)
# X1 and X2 are highly highly correlated:
cor(x1,x2)
linear_reg(y, X=cbind(1, x1))
linear_reg(y, X=cbind(1, x1, x2))
summary(lm(y ~ x1))
summary(lm(y ~ x1 + x2))
```

```
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40, 93)
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
x2 <- c(41.0, 22.5, 35.5, 11.0, 14.5, 4.5, 6.0, 9.0, 12.0, 36.0, 5.0, 40.5)
```

\# X1 and X2 are perfectly correlated:
$\operatorname{cor}(x 1, x 2)$
linear_reg(y, $\mathrm{X}=\mathrm{cbind}(1, \mathrm{x} 1)$)
linear_reg(y, X=cbind(1, x1, x2))
summary $(\operatorname{lm}(y \sim x 1))$
summary $(\operatorname{lm}(y \sim x 1+x 2))$

Let's remember:

$$
\operatorname{Var}[\mathbf{B}]=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

Since a standard error is defined as an estimated square root of the variance of an estimator,

$$
\begin{equation*}
s e\left(\hat{\beta}_{j}\right)=\hat{\sigma} \sqrt{\left[\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right]_{j j}}, \quad j=0,1, \ldots, p \tag{3.77}
\end{equation*}
$$

$$
\begin{aligned}
\left(\mathbf{X}^{T} \mathbf{X}\right) \hat{\mathbf{b}} & =\mathbf{X}^{T} \mathbf{y} \\
\text { or } \hat{\mathbf{b}} & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

Stat 306. Multicollinearity, condition for non-singular $\mathbf{X}^{T} \mathbf{X}$

1. $\mathbf{X}^{T} \mathbf{X}$ is non-singular or invertible if and only if \mathbf{X} has linearly independent columns. [$\mathbf{X}^{T} \mathbf{X}$ is singular iff \mathbf{X} has linearly dependent columns.
2. If \mathbf{X} has columns that are nearly linearly dependent, then $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ exists but has diagonal entries that are large (hence SEs of some $\hat{\beta}$'s can be large). When this happens, the variables are said to be nearly multicollinear.

Mathematical result about $\mathbf{X}^{T} \mathbf{X}$ (Section 3.11).
(1) $\mathbf{X}^{T} \mathbf{X}$ is invertible $\Longleftrightarrow \mathbf{X}$ has full column rank (\Longleftrightarrow the columns of \mathbf{X} are linearly independent)
$\mathbf{X}^{T} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{T} \mathbf{y}$ is equation that least squares estimate $\hat{\boldsymbol{\beta}}$ satisfies.
If $\mathbf{X}^{T} \mathbf{X}$ is non-singular, solution $\hat{\boldsymbol{\beta}}$ is unique.
If $\mathbf{X}^{T} \mathbf{X}$ is singular, solution $\hat{\boldsymbol{\beta}}$ is non-unique (there exists $\hat{\boldsymbol{\beta}}$ from the geometry of least squares).
If $\operatorname{nrow}(\mathbf{X})=n<k=\operatorname{ncol}(\mathbf{X}), \mathbf{X}^{T} \mathbf{X}$ is singular.
The opposite of statement (1) is:
(2) $\mathbf{X}^{T} \mathbf{X}$ is singular $\Longleftrightarrow \mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{k}\right)$ has column $\operatorname{rank}<k=\operatorname{ncol}(\mathbf{X}) \Longleftrightarrow$ there is at least one non-trivial linear combination of columns of \mathbf{X} that is linearly dependent; i.e., there are real numbers a_{1}, \ldots, a_{k} (not all zero) such that the linear combination $a_{1} \mathrm{X}_{1}+\cdots+a_{k} \mathrm{X}_{k}=\mathbf{0}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{k}, \mathbf{0}\right.$ here are n-vectors).

Only one such linear combination (up to scaling) implies column rank=k-1. Two such unrelated linear combinations (up to scaling) implies column rank $=k-2$ etc.

Multicollinearity is due to:

- Poorly designed study
- Similar problem to having "no control group"
"difficult to disentangle the effect of $x 1$ and $x 2$ "
We interpret:
- β_{1} as the expected change in y due to x_{1}, given x_{2} is already in the model.
- β_{2} as the expected change in y due to x_{2}, given x_{1} is already in the model.

However:

- x_{1} and x_{2} contribute redundant information about y.

Multicollinearity can be detected using VIF

Another way to check for highly correlated explanatory variables is through regressions of one x variable on the remaining explanatory variables. Let $R_{x_{j} \cdot \mathbf{x}-j}^{2}$ denote the R^{2} value when x_{j} is regressed on the other explanatory variables in \mathbf{X}. If $R_{x_{j} \cdot \mathbf{x}_{-j}}^{2}$ is close to 1 , then there is a strong linear relationship between x_{j} and one or more of the other explanatory variables. Multicollinearity can be measured through variance inflation factors

$$
\begin{equation*}
V I F_{j}=\frac{1}{1-R_{x_{j} \cdot \mathbf{x}_{-j}}^{2}}, \quad j=1, \ldots, p . \tag{3.148}
\end{equation*}
$$

If $\mathrm{VIF}_{j} \gg 1$, there is multicollinearity involving x_{j} in the data, and may explain why $S E\left(\hat{\beta}_{j}\right)$ is large.

