Stat 306: Finding Relationships in Data. Lecture 12 Section 3.11 Multicollinearity

			1
Changed?	Location shift to X ₁	Scale change to X ₁	
b ₁	X	~	
SE(b ₁)	×	~	
Confidence Interval for β_1	×	~	
p-value $H_0: \beta_1 = 0$	×	X	(4
MS(Res)	×	×	Cash (
R-squared	×	×	
Adjusted R-squared	×	×	
F-test	×	×	

Model:

 $Y = \beta_0 + \beta_1 X_1$

Example:


```
# We define y as "cash on hand ($)"
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40,93)
# We also consider "age (years)" as a continuous variable, x1
# and also "income (K$)", as a continuous variable, x2
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)</pre>
```

```
# x1 as measured originally:
years_since_birth <- x1
# Location shift and scale change to x1:
years_since_adult <- x1-18
# Scale change to x1:
months_since_birth <- x1*24</pre>
```

```
# using "handmade" linear regression function:
linear_reg(y, X=cbind(1, years_since_birth))
linear_reg(y, X=cbind(1, years_since_adult))
linear_reg(y, X=cbind(1, months_since_birth))
```

```
# or using lm function:
    summary(lm(y~ years_since_birth))
    summary(lm(y~ years_since_adult))
    summary(lm(y~ months_since_birth))
```

What is different in the output between the 3 models? What is the same ?

Changed?	Location shift to X ₁	Scale change to X ₁
b ₁	×	~
SE(b ₁)	×	~
Confidence Interval for β_1	×	~
p-value $H_0: \beta_1 = 0$	×	X
MS(Res)	×	×
R-squared	×	×
Adjusted R-squared	X	×
F-test	×	×

Changed?	Location shift to X ₁	Scale change to X ₁
b ₀	~	×
SE(b ₀)	~	×
Confidence Interval for β_0	~	×
p-value $H_0: \beta_0 = 0$	~	×

Model:

$$Y = \beta_0 + \beta_1 X_1$$

units

95% Confidence Interval for the subpopulation mean:

$$\hat{\mu}_Y(\mathbf{x}^*)$$
 +/- $t_{n-k,0.975} se[\hat{\mu}_Y(\mathbf{x}^*)]$:

where: $se[\hat{\mu}_Y(\mathbf{x}^*)] = \hat{\sigma} \sqrt{\mathbf{x}^{*T} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}^*}$.

Even

Changed?	Location shift to X ₁	Scale change to X ₁	
b ₁	~	~	
SE(b ₁)	~	~	
Confidence Interval for β_1	~	~	
p-value $H_0: \beta_1 = 0$	~	~	\$)
MS(Res)	×	×	Cash (
R-squared	×	×	
Adjusted R-squared	×	×	
F-test	×	×	

Model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 (X_1^2)$$

Example:


```
# We define y as "cash on hand ($)"
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40, 93)
# We also consider "age (years)" as a continuous variable, x1
# and also "income (K$)", as a continuous variable, x2
x1 < -c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
# x1 as measured originally:
years_since_birth <- x1</pre>
# Location shift and scale change to x1:
years_since_adult <- x1-18</pre>
# Scale change to x1:
months since birth <- x1*24
# using "handmade" linear regression function:
linear reg(y, X=cbind(1, years since birth, (years since birth)^2))
```

```
linear_reg(y, X=cbind(1, years_since_adult, (years_since_adult)^2))
linear_reg(y, X=cbind(1, months_since_birth, (months_since_birth)^2))
```

```
# or using lm function:
summary(lm(y~ years_since_birth + I(years_since_birth^2)))
summary(lm(y~ years_since_adult + I(years_since_adult^2)))
summary(lm(y~ months_since_birth + I(months_since_birth^2)))
```

What is different in the output between the 3 models? What is the same ?

Changed?	Location shift to X_1	Scale change to X ₁
b ₁	~	~
SE(b ₁)	~	
Confidence Interval for β_1	~	
p-value H ₀ : $\beta_1 = 0$	~	
MS(Res)	×	×
R-squared	X	×
Adjusted R-squared	×	×
F-test	×	×

Changed?	Location shift to X ₁	Scale change to X ₁
b ₀	~	×
SE(b ₀)	~	×
Confidence Interval for β_0	~	×
p-value H ₀ : $\beta_0 = 0$	~	×
b ₂	×	
SE(b ₂)	×	
Confidence Interval for β_2	×	
p-value H ₀ : $\beta_2 = 0$	×	×

Multicollinearity

Let's remember:

$$Var[\mathbf{B}] = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$$

Since a standard error is defined as an estimated square root of the variance of an estimator,

(3.77)
$$se(\hat{\beta}_j) = \hat{\sigma} \sqrt{[(\mathbf{X}^T \mathbf{X})^{-1}]_{jj}}, \quad j = 0, 1, \dots, p.$$

	Adding X_2 , Cor(X_2 , X_1) = 0	
b ₁	×	
SE(b ₁)	 	-
Confidence Interval for β_1		-
<i>p</i> -value H ₀ : β ₁ = 0		
MS(Res)	 	-
R-squared	 	-
Adjusted R-squared	~	-

- $Y = \beta_0 + \beta_1 X_1$ vs.
- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

```
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40,93)
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
x2 <- c(-15.35, 6.66, -54.29, 23.52, -33.99, -24.88, 6.48, 28.91, -48.96,
38.34, 31.52, 32.43)</pre>
```

```
# X1 and X2 are not correlated:
cor(x1, x2)
```

```
linear_reg(y, X=cbind(1, x1))
linear_reg(y, X=cbind(1, x1, x2))
```

```
summary(lm(y ~ x1))
summary(lm(y ~ x1 + x2))
```

	Adding X_2 , Cor(X_2 , X_1) = 0	Adding X_2 , Cor $(X_2, X_1) \neq 0$
b ₁	X	~
SE(b ₁)	 ✓ 	
Confidence Interval for β_1		
p-value $H_0: \beta_1 = 0$		~
MS(Res)	~	~
R-squared	 	~
Adjusted R-squared	~	~

$$Y = \beta_0 + \beta_1 X_1$$

vs.
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40,93)
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
x2<-c(60, 55, 26, 21, 0, 15, 17, 31, 0, 112, 24, 92)</pre>

X1 and X2 are somewhat correlated: cor(x1, x2)

```
linear_reg(y, X=cbind(1, x1))
linear_reg(y, X=cbind(1, x1, x2))
```

```
summary(lm(y ~ x1))
summary(lm(y ~ x1 + x2))
```

	Adding X_2 , Cor(X_2 , X_1) = 0	Adding X_2 , Cor(X_2 , X_1) $\neq 0$	Adding X_2 , Cor(X_2 , X_1) ≈ 1
b ₁	×		!!
SE(b ₁)	 	 	!!
Confidence Interval for β_1	 	 	!!
p-value H ₀ : $\beta_1 = 0$!!
MS(Res)			!!
R-squared			!!
Adjusted R-squared	•	•	!!

```
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40, 93)
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
x2 <- c(101, 63, 91, 36, 43, 24, 31, 37, 36, 87, 34, 98)
```

X1 and X2 are highly highly correlated: cor(x1,x2)

```
linear_reg(y, X=cbind(1, x1))
linear_reg(y, X=cbind(1, x1, x2))
```

```
summary(lm(y ~ x1))
summary(lm(y ~ x1 + x2))
```

```
y <- c(71, 54, 43, 45, 21, 11, 30, 45, 10, 90, 40, 93)
x1 <- c(82, 45, 71, 22, 29, 9, 12, 18, 24, 72, 10, 81)
x2 <- c(41.0, 22.5, 35.5, 11.0, 14.5, 4.5, 6.0, 9.0, 12.0, 36.0, 5.0, 40.5)
```

```
# X1 and X2 are perfectly correlated:
cor(x1,x2)
```

```
linear_reg(y, X=cbind(1, x1))
linear_reg(y, X=cbind(1, x1, x2))
```

```
summary(lm(y \sim x1))
summary(lm(y \sim x1 + x2))
```

Let's remember:

$$Var[\mathbf{B}] = \sigma^2 (\mathbf{X}^T \mathbf{X})^{-1}$$

Since a standard error is defined as an estimated square root of the variance of an estimator,

(3.77)
$$se(\hat{\beta}_j) = \hat{\sigma}\sqrt{[(\mathbf{X}^T \mathbf{X})^{-1}]_{jj}}, \quad j = 0, 1, \dots, p.$$

(3.10) $(\mathbf{X}^T \mathbf{X}) \hat{\mathbf{b}} = \mathbf{X}^T \mathbf{y}$ (3.11) or $\hat{\mathbf{b}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$.

Stat 306. Multicollinearity, condition for non-singular $\mathbf{X}^T \mathbf{X}$

1. $\mathbf{X}^T \mathbf{X}$ is non-singular or invertible if and only if \mathbf{X} has linearly independent columns. $[\mathbf{X}^T \mathbf{X}$ is singular iff \mathbf{X} has linearly dependent columns.

2. If **X** has columns that are nearly linearly dependent, then $(\mathbf{X}^T \mathbf{X})^{-1}$ exists but has diagonal entries that are large (hence SEs of some $\hat{\beta}$'s can be large). When this happens, the variables are said to be nearly multicollinear.

Mathematical result about $\mathbf{X}^T \mathbf{X}$ (Section 3.11).

- (1) $\mathbf{X}^T \mathbf{X}$ is invertible $\iff \mathbf{X}$ has full column rank (\iff the columns of \mathbf{X} are linearly independent) $\mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{y}$ is equation that least squares estimate $\hat{\boldsymbol{\beta}}$ satisfies. If $\mathbf{X}^T \mathbf{X}$ is non-singular, solution $\hat{\boldsymbol{\beta}}$ is unique.
- If $\mathbf{X}^T \mathbf{X}$ is singular, solution $\hat{\boldsymbol{\beta}}$ is non-unique (there exists $\hat{\boldsymbol{\beta}}$ from the geometry of least squares). If $\operatorname{nrow}(\mathbf{X}) = n < k = \operatorname{ncol}(\mathbf{X}), \mathbf{X}^T \mathbf{X}$ is singular. The opposite of statement (1) is:

(2) $\mathbf{X}^T \mathbf{X}$ is singular $\iff \mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_k)$ has column rank $\langle k = \operatorname{ncol}(\mathbf{X}) \iff$ there is at least one non-trivial linear combination of columns of \mathbf{X} that is linearly dependent; i.e., there are real numbers a_1, \dots, a_k (not all zero) such that the linear combination $a_1\mathbf{X}_1 + \cdots + a_k\mathbf{X}_k = \mathbf{0}$ ($\mathbf{X}_1, \dots, \mathbf{X}_k, \mathbf{0}$ here are *n*-vectors).

Only one such linear combination (up to scaling) implies column rank=k - 1. Two such unrelated linear combinations (up to scaling) implies column rank=k - 2 etc.

Multicollinearity is due to:

- Poorly designed study
- Similar problem to having "no control group"

"difficult to disentangle the effect of x1 and x2" We interpret:

- β_1 as the expected change in **y** due to x_1 , given x_2 is already in the model.
- β_2 as the expected change in **y** due to x_2 , given x_1 is already in the model.

However:

• x_1 and x_2 contribute redundant information about **y**.

Multicollinearity can be detected using VIF

Another way to check for highly correlated explanatory variables is through regressions of one x variable on the remaining explanatory variables. Let $R_{x_j \cdot \mathbf{x}_{-j}}^2$ denote the R^2 value when x_j is regressed on the other explanatory variables in \mathbf{X} . If $R_{x_j \cdot \mathbf{x}_{-j}}^2$ is close to 1, then there is a strong linear relationship between x_j and one or more of the other explanatory variables. Multicollinearity can be measured through variance inflation factors

(3.148)
$$VIF_j = \frac{1}{1 - R_{x_j \cdot \mathbf{x}_{-j}}^2}, \quad j = 1, \dots, p$$

If $\text{VIF}_j \gg 1$, there is multicollinearity involving x_j in the data, and may explain why $SE(\hat{\beta}_j)$ is large.