Stat 306:

Finding Relationships in Data.
Lecture 1
Introduction to Course

Stat 306:
 Finding Relationships in Data.

The main topic of this course is regression, which means fitting prediction equations.

Regression is a common statistical method in scientific research.

Statistics - Recap: the two sample t-test Age vs. Money

Age vs. Money

Age vs. Money

Dependent variable

Independent variable

Age vs. Money

Dependent variable
χ

Independent variable
r

Age vs. Money

Dependent variable

Independent variable
$\mathbf{Y} \longrightarrow$ dollars (\$)

Age vs. Money

Dependent variable

Independent variable

Population

Age vs. Money

Dependent variable

Independent variable

Population

Age vs. Money

Dependent variable

Independent variable

Population

Population parameters

$\sigma^{2} \longleftarrow$ Variance (\$) for everyone

Age vs. Money

Dependent variable

Independent variable

Population

Population parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \mu_{0}=\mu_{1} \\
& H_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Age vs. Money

Dependent variable

Independent variable

Population

Population parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \mu_{0}=\mu_{1} \ll \text { "Null" hypothesis } \\
& H_{1}: \mu_{0} \neq \mu_{1} \sum_{\text {"Alternative" hypothesis }}
\end{aligned}
$$

Age vs. Money

Dependent variable

Population

Population parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \mu_{0}=\mu_{1} \\
& H_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Independent variable

Sample

Age vs. Money

Dependent variable

Population

Population parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{0}=\mu_{1} \\
& \mathrm{H}_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Independent variable

Sample

Age vs. Money

Dependent variable

Population

Population parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{0}=\mu_{1} \\
& \mathrm{H}_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Independent variable

Sample

Age vs. Money

Dependent variable

Population

Independent variable

Sample, $n=9$

Age vs. Money

Dependent variable

Population

Population parameters
$\mu_{0}, \mu_{1}, \sigma^{2}$
Hypothesis Test

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{0}=\mu_{1} \\
& \mathrm{H}_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Independent variable

Sample, $n=9$

Age vs. Money

Dependent variable

Population

Population
parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \mu_{0}=\mu_{1} \\
& H_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Independent variable

Sample, n=9

Age vs. Money

Dependent variable

Independent variable

Sample, $\mathrm{n}=9$

Population

Population parameters

$$
\mu_{0}, \mu_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \mu_{0}=\mu_{1} \\
& H_{1}: \mu_{0} \neq \mu_{1}
\end{aligned}
$$

Sample
statistics

$$
\begin{aligned}
& \bar{y}_{0}=56 \\
& \bar{y}_{1}=27 \\
& \bar{y}_{0}-\bar{y}_{1}=29 \\
& s_{p}=10.81 \\
& t=2.68, d f=7 \\
& p \text {-value }=0.03 \\
& 95 \% \text { C.I. }=[3.4,54.6]
\end{aligned}
$$

Age vs. Money

Objective:		$\bar{y}_{0}=56$
	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.	$\begin{aligned} & \bar{y}_{1}=27 \\ & \bar{y}_{0}-\bar{y}_{1}=29 \\ & s_{p}=10.81 \end{aligned}$
Design and		
Methods:	We surveyed a number individuals and for each determined approximate age (recorded as "old" or "young") and the amount of money (in dollars) in their bank accounts. Comparison of the two groups was done using a Student two sample t-test.	$\begin{aligned} & t=2.68, d f=7 \\ & p \text {-value }=0.03 \\ & 95 \% \text { C.I. }=[3.4,54.6] \end{aligned}$
Results:	We obtained a random sample of $n=9$ subjects. The "young" group had an average of $\$ 27$, while the "old" group had an average of $\$ 56$. This estimated difference of $\$ 29(95 \%$ C.I. $=[\$ 3.4, \$ 54.6])$ is statistically significant, $t=2.68$, $d f=7 ; p$-value $=0.03$.	

Conclusions: We found that, as hypothesized, age is associated with money. On average, younger people have less in their accounts than older people.

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the independent variable, money, is normally distributed.
- the two populations being compared have the same variance.

Boxplot

Linear Regression

Age vs. Money

Independent variable

Linear Regression

Age vs. Money

Dependent variable
$X\left\{\begin{array}{l}\mathrm{olr}^{\prime}(1) \\ \text { yu.ng } \\ \text { y) }\end{array}\right.$

Independent variable
$\gamma \longrightarrow \begin{gathered}\text { dollars (\$) } \\ \text { In bank ac }\end{gathered}$

Linear Regression

Age vs. Money

Independent variable

Linear Regression

Age vs. Money

PREDICTOR variable
$X \longrightarrow \begin{aligned} & \text { Age in } \\ & \text { Years }\end{aligned}$

RESPONSE variable

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { dollars (\$) } \\ & \text { In bank account }\end{aligned}$

Population

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { dollars (\$) } \\ & \text { In bank account }\end{aligned}$

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { dollars (\$) } \\ & \text { In bank account }\end{aligned}$

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned} \sum_{\text {"Alternative" hypothesis }}
$$

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Sample

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { dollars (\$) } \\ & \text { In bank account }\end{aligned}$

Sample

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Population

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { dollars (\$) } \\ & \text { In bank account }\end{aligned}$

Sample

+14

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

RESPONSE variable

Sample, $n=9$

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { dollars (\$) } \\ & \text { In bank account }\end{aligned}$

Sample, $\mathrm{n}=9$

	χ	y
	82	71
	45	54
	71	43
$\dot{\text { i }}$	22	45
,	29	21
i	9	11
i	12	30
T	18	45
i	24	10

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable
$Y \longrightarrow \begin{aligned} & \text { dollars (\$) } \\ & \text { In bank account }\end{aligned}$

Population

$$
\begin{aligned}
& \text { Population } \\
& \text { parameters } \\
& \qquad \beta_{0}, \beta_{1}, \sigma^{2}
\end{aligned}
$$

Hypothesis Test

$$
\begin{aligned}
& H_{0}: \beta_{1}=0 \\
& H_{1}: \beta_{1} \neq 0
\end{aligned}
$$

Sample, $\mathrm{n}=9$

Sample statistics		χ	y
$\mathrm{b}_{0}=17.7$		82	71
$\mathrm{b}_{1}=0.55$	\bigcirc	45	54
$\mathrm{s}=15.5$	0	4	43
$\mathrm{R}^{2}=0.49$		71	43
	i	22	45
	i	29	21
	i	9	11
	+	12	30
	π	18	45
		24	10

Age vs. Money

PREDICTOR variable

$$
X \longrightarrow \begin{gathered}
\text { Age in } \\
\text { Years }
\end{gathered}
$$

RESPONSE variable

Population

Population parameters

$$
\beta_{0}, \beta_{1}, \sigma^{2}
$$

Hypothesis Test

$$
H_{0}: \beta_{1}=0
$$

$$
H_{1}: \beta_{1} \neq 0
$$

Sample, $n=9$

Sample statistics		χ	y
$\mathrm{b}_{0}=17.7$		82	71
$b_{1}=0.55$	\bigcirc	45	54
$\mathrm{s}=15.5$	R	45	4
$\mathrm{R}^{2}=0.49$		71	43
	i	22	45
For parameter β_{1}	T	29	21 11
95\% C.I. $=[0.05,1.05]$	$\stackrel{+}{1}$	12	30
p-value $=0.036$	T	18	45
	,	24	10

Age vs. Money

Objective:	The purpose of this observational study was to demonstrate if, and to what extent, age is associated with money.
Design and Methods: We collected a random sample of individuals and for each determined their age (recorded in years) and the amount of money (in dollars) in their accounts. Analysis of the data was done using linear regression.	

$b_{0}=17.7$
$b_{1}=0.55$
$\mathrm{s}=15.5$
$R^{2}=0.49$

Results: We obtained a random sample of $n=9$ subjects. There is a statistically significant association between age and money (p-value $=0.036$). For every additional year in age, an individual's amount of money increases on average by an estimated of \$0.55 (95\% C.I. = [\$0.05, \$1.05]).

Conclusions: We found that, as hypothesized, age is associated with money. In our sample age accounted for about half of the variability observed in money ($\mathrm{R}^{2}=0.49$). We predict that a 50 year old will have \$45.1 (95\% P.I. = [\$5.6, \$84.5]), whereas a 40 year old will have \$39.6 (95\% P.I. = [\$0.8, \$78.4]).

Small Print: The analysis rests on the following assumptions:

- the observations are independently and identically distributed.
- the response variable, money, is normally distributed.
- Homoscedasticity of residuals or equal variance.
- the relationship between response and predictor variables is linear.

